Making Sense of The Audio Stack On Unix

Patrick Louis

2021-02-07

Published online on venam.nixers.net

© Patrick Louis 2021

This publication is in copyright. Subject to statutory exception and to the
provision of relevant collective licensing agreements, no reproduction of any
part may take place without the written permission of the rightful author.

First published eBook format 2021

The author has no responsibility for the persistence or accuracy of urls for
external or third-party internet websites referred to in this publication, and does
not guarantee that any content on such websites is, or will remain, accurate or
appropriate.

Contents
Introduction

Hardware layer

Analog to Digital & Digital to Analog (ADC & DAC)

Libraries

Audio Driver

Advanced Linux Sound Architecture (ALSA)

Open Sound System (OSS) and SADA

Sound Servers

sndio

aRts (analog Real time synthesizer) and ESD or ESounD (Enlight-

ened Sound Daemon)

PulseAudio
PulseAudio — What Is It?

Pulseaudio — Overall Design
Pulseaudio — Sink, Sink Input, Source, and Source Input
Pulseaudio — Internal Concepts: Cards, Card Profile, Device Port,

Device

Pulseaudio — Everything Is A Module Thinking
Pulseaudio — Startup Process And Configuration
Pulseaudio — Interesting Modules And Features

Pulseaudio — Tools . . .
Pulseaudio — Suspending

JACK
PipeWire
Conclusion

Bibliography

10

11

15

22

25

26

28

29
29
30
32

34
35
36
38
40
41

42

45

53

55

Introduction

Come see my magical gramophone

Audio on Unix is a little zoo, there are so many acronyms for projects and APIs
that it’s easy to get lost. Let’s tackle that issue! Most articles are confusing
because they either use audio technical jargon, or because they barely scratch
the surface and leave people clueless. A little knowledge can be dangerous.

In this article I’ll try to bridge the gap by not requiring any prerequisite knowl-
edge while also giving a good overview of the whole Unix audio landscape.
There’s going to be enough details to remove mysticism (Oh so pernicious in
web bubbles) and see how the pieces fit.

By the end of this article you should understand the following terms:

¢ ALSA

« OSS

« ESD

o aRts

¢ sndio

¢ PulseAudio
o PipeWire
e GStreamer
« LADSPA

We'll try to make sense of their utility and their link. The article will focus a bit
more on the Linux stack as it is has more components than others and is more
advanced in that respect. We’ll also skip non-open source Unix-like systems.
As usual, if you want to go in depth there’s a list of references at the bottom.

Overall, we got:

e Hardware layer: the physical devices, input and output

o Kernel layer: interfacing with the different hardware and managing their
specificities (ALSA, OSS)

e Libraries: used by software to interface with the hardware directly, to ma-
nipulate audio/video, to interface with an intermediate layer for creating
streams (GStreamer, Libcanberra, libpulse, libalsa, etc..), and to have a
standard format (LADSPA).

o Sound servers: used to make the user facing (user-level) interaction easier,
more abstract, and high level. This often acts as glue, resolving the issue
that different software speak different protocols. (PulseAudio, ESD, aRts,
PipeWire, sndio)

Let me preface this by saying that I am not a developer in any of these tech,
neither am I a sound engineer. I am simply regrouping my general understanding
of the tech so that anyone can get an overview of what the pieces involved are,
and maybe a bit more.

Hardware layer

It’s essential to have a look at the hardware at our disposal to understand the
audio stack because anything above it will be its direct representation.

There are many types of audio interfaces, be it input or output, with different
varieties of sound cards, internal organizations, and capabilities. Because of this
diversity of chipsets, it’s simpler to group them into families when interacting
with them.

Let’s list the most common logical components that these cards can have.

e An interface to communicate with the card connected to the bus, be it
interrupts, IO ports, DMA (direct memory access), etc..

o Output devices (DAC: Digital to analog converter)

o Input devices (ADC: Analog to digital converter)

e An output amplifier, to raise the power of output devices

e An input amplifier, same as above but for input devices (ex: microphones).

e Controls mechanism to allow different settings

e Hardware mixer, which controls each devices volume and routing, usually
volume is measured in decibel.

o A MIDI (Musical Instrument Digital Interface) device/controller, a stan-
dard unified protocol to control output devices (called synthesizers) —
think of them like keyboards for sounds.

¢ A sequencer, a builtin MIDI synthesizer (output of the above)

e A timer used to clock audio

e Any other special features such as a 3D spatializer

It is important to have a glance at these components because everything in the
software layers attempts to make them easier to approach.

Analog to Digital & Digital to Analog (ADC &
DAC)

A couple of concepts related to the interaction between the real and digital
world are also needed to kick-start our journey.

In the real world, the analog world, sound is made up of waves, which are air
pressures that can be arbitrarily large.

Speakers generating sound have a maximum volume/amplitude, usually repre-
sented by 0dB (decibels). Volume lower than the maximum is represented by
negative decibels: -10dB, -20dB, etc.. And no sound is thus -oo dB.

This might be surprising and actually not really true either. Decibel doesn’t
mean much until it’s tied to a specific absolute reference point, it’s a relative
scale. You pick a value for 0dB that makes sense for what you are trying to
measure.

TP PREERRLITTRY

vu meter

The measurement above is the dBF'S, the dB relative to digital full-scale, aka
digital 0. There are other measurements such as dB SPL and dBV.

One thing to note about decibels is that they follow a strictly exponential law,
which matches it to human perception. What sounds like a constantly increas-
ing volume is indicated by a constantly rising dB meter, corresponding to an

exponentially rising output power. This is why you can hear both vanishingly
soft sounds and punishingly loud sounds. The step from the loudest you can
hear up to destroying your ears or killing you is only a few more dB.

While decibels are about loudness, the tone is represented as sine waves of
certain frequency, the speed. For example, the note A is a 440Hz sine wave.

Alright, we got the idea of decibel and tone but how do we get from waves to
our computer or in reverse? This is what we call going from analog to digital
or digital to analog.

To do this we have to convert waves into discrete points in time, taking samples
per second — what we call sample rate. The higher the sample rate, the more
accurate the representation of the analog sound (a lollipop graph). Each sample
has a certain accuracy, how much information we store in it, the number of bits
for each sample — what we call the bit rate/depth (the higher the less noise).
For example, CDs use 16 bits.

Which value you choose as your sample rate and bit rate will depend on a
trade-off between quality and memory use.

NB: That’s why it makes no sense to convert from digital low sample rate to
digital high sample rate, you’ll just be filling the void in the middle of the
discrete points with the same data.

Additionally, you may need to represent how multiple channels play sound —
multichannel. For example, mono, stereo, 3d, surround, etc..

It’s important to note that if we want to play sounds from multiple sources at
the same time, they will need to agree on the sample rate, bit rate, and format
representation, otherwise it’ll be impossible to mix them. That’s something
essential on a desktop.

The last part in this equation is how to implement the mechanism to send audio
to the sound card. That highly depends on what the card itself supports, but
the usual simple mechanism is to fill buffers with streams of sound, then let
the hardware read the samples, passing them to the DAC (digital to analog
converter), to then reach the speaker, and vice versa. Once the hardware has
read enough samples it’ll do an interrupt to notify the software side that it needs
more samples. This cyclic mechanism goes on and on in a ring fashion.

If the buffer samples aren’t filled fast enough we call this an underrun or drop-
out (aka xruns), which result in a glitch, basically audio stopping for a short
period before the buffer is filled again.

The audio can be played at a certain sample rate, with a certain granularity, as
we’ve said. So if we call buffer-size the number of samples that can be contained
in a cyclic-buffer meant to be read by the hardware, fragment-size or period-size
the number of samples after which an interrupt is generated, number-fragments
the number of fragments that can fit in a hardware buffer (buffer-size/fragment-
size), and sample-rate the number of samples per seconds.

Then the latency will be buffer-size/sample-rate, for example if we can fit 100

https://en.wikipedia.org/wiki/Lollipop_graph

samples in a buffer and the samples are played once every 1ms then that’s a
100ms latency; we’ll have to wait 100ms before the hardware finishes processing
the buffer.

From the software side, we’ll be getting an interrupt every period-size/sample-
rate. Thus, if our buffer-size is 1024 samples, and fragment-size is 512, and our
sample-rate is 44100 samples/second, then we get an interrupt and need to refill
the buffer every 512/44100 = 11.6 ms, and our latency for this stage is up to
1024/44100 = 23 ms. Audio processing pipelines consist of a series of buffers
like this, with samples read from one buffer, processed as needed, and written
to the next.

Choosing the values of the buffer-size and period-size are hard questions. We
need a buffer big enough to minimize underruns, but we also need a buffer
small enough to have low latency. The fragments should be big enough to avoid
frequent interrupts, but we also need them small enough so that we’re able to
fill the buffer and avoid underruns.

What some software choose to do is to not follow the sound card interrupts
but to rely on the operating system scheduler instead, to be able to rewrite the
buffer at any time so that it stays responsive to user input (aka buffer rewinding).
This in turn allows to make the buffer as big as possible. Though, timers often
deviate, but that can be fixed with good real-time scheduling.

There are no optimal solutions to this problem, it will depend on requirements,
and these values can often be configured.

So we've seen how sound is represented in the real world with strength and tone,
to then be converted in the digital world via digital to analog DAC or analog
to digital ADC converters. This is done by taking samples at a rate and of a
certain accuracy called the bit rate. There can also be other information needed
such as the channel, byte ordering, etc.. Sound that needs to be mixed needs
to agree on these properties. Lastly, we've seen how software has to manage
a buffer of samples so that sound plays continuously on the device, while also
being responsive to users.

https://venam.nixers.net/blog/unix/2020/05/02/time-on-unix.html
https://venam.nixers.net/blog/unix/2020/05/02/time-on-unix.html

Libraries

Audio related libraries seem to be an alphabet soup of keywords. Here are some
examples: alsaplayer-esd, libesd-alsa, alsa-oss, alsaplayer-jack, gstreamer-alsa,
gstreamer-esd, lib-alsa-oss, libpulse, libpulse-simple, libao, and so on.

For programs to be able to use audio hardware and the related functionalities,
they rely on libraries offering specific APIs. Over time, some APIs get dep-
recated and new ones appear. Thus, that creates a situation where multiple
software speak differently.

To solve this issue, many glue libraries have appeared to interoperate between
them. This is especially true when it comes to sound servers such as aRts, eSD,
PulseAudio, and backends. For example ALSA supports an OSS layer, that is
the role of lib-alsa-oss.

Apart from libraries used to play or record sound and music, there are libraries
that have specific usages.

GStreamer is a popular library for constructing chains of media-handling com-
ponents. It is the equivalent of a shell pipeline for media. This library is used
in multiple software in the GNOME desktop environment. For example, cheese
(webcam) uses it to add video effects on the fly. Keep this in mind as the creator
of GStreamer is now working on PipeWire and applying some of the mindset
and functionalities there.

libcanberra is a library that implements a freedesktop.org specs to play event
sounds. Instead of having to play event sounds by loading and playing a sound
file from disk every time, desktop components should instead use this library
which abstract the lower level layer that will handle playing it on the appropri-
ate backend. It’s important considering what we said about them changing over
time.

The freedesktop.org event sound files can usually be found in: /usr/share/-
sounds/freedesktop/stereo/, and you can test by calling on the command line:

canberra-gtk-play -i bell
canberra-gtk-play -i phone-incoming-call

There are also multiple libraries used to abstract the audio backend of any OS, so
called cross-platform audio libraries. This includes libraries such as PortAudio
(software using it), OpenAL that focuses on 3D audio, libSDL, and libao.

Lastly, there is LADSPA, the Linux Audio Developer’s Simple Plugin API, which
is a library offering a standard way to write audio filter plugins to do signal
processing effects. Many programs and libraries support the format including
ardour, audacity, GStreamer, Snd, ALSA (with plugin), and PulseAudio (with
plugin).

We’ve seen multiple usages for libraries, from their use as glue, to them helping
in chaining audio, to desktop integration, to cross-platform interaction, and to
allow a common format for audio filters.

10

https://en.wikipedia.org/wiki/Category:Software_that_uses_GStreamer
http://portaudio.com/apps.html

Audio Driver

For us to be able to use the audio hardware components we mentioned, we
need a way to communicate with them, what we call a driver. That job is
done dynamically by the kernel which loads a module when it encounters a new
device.

Every platform got its device management mechanism, be it devd on FreeBSD,
systemd-udev, Gentoo’s eudev, Devuan’s vdev, mdev from BusyBox or Suckless,
ete..

For example, on Linux you can take a look at the currently connected compo-
nents and the driver handling them by executing Ispci. Similarly, on FreeBSD
this is done with the pciconf -l command.

To be handled properly, the hardware needs an appropriate driver associated
with it.

On Linux, the ALSA kernel layer handles this automatically. The driver names
start with the prefix _snd__ . Issuing lsmod should show a list of them. (sup-
ported cards)

In case the device doesn’t get associated with the right driver, you can always
create specific rules in the device management (udev).

On FreeBSD, the process takes place within the kernel sound infrastructure and
is controlled dynamically at runtime using sysctl kernel tunables. We’ll see how
to tune drivers settings in another section, as this is how you interact with them
on BSD. The process is similar on most BSDs.

If the driver doesn’t load automatically you can always manually activate the
kernel module. For example, to load the Intel High Definition Audio bridge
device driver on the fly:

$ kldload snd_hda

Or to keep them always loaded you can set it at boot time in /boot/loader.conf:

snd_hda_load="YES"

On BSDs and Linux the drivers, OSS-derived and ALSA in the kernel, then map
the components within the file system, they are the reflection of the hardware
we’ve seen before. Mostly input, output, controllers, mixers, clocks, midi, and
more.

On FreeBSD the sound drivers may create the following device nodes:

o /dev/dsp¥%d.phd Playback channel.

e /dev/dsphd.r%d Record channel.

e /dev/dspld.%d Digitized voice device.

e /dev/dspW)d.%d Like /dev/dsp, but 16 bits per sample.
e /dev/dsphkd.vpkd Virtual playback channel.

o /dev/dsp¥d.vrid Virtual recording channel.

11

https://www.alsa-project.org/main/index.php/Matrix:Main
https://www.alsa-project.org/main/index.php/Matrix:Main

e /dev/audio’d.%d Sparc-compatible audio device.
e /dev/sndstat Current sound status, including all channels and drivers.

Example of status:

$ cat /dev/sndstat

FreeBSD Audio Driver (newpcm: 64bit 2009061500/amd64)

Installed devices:

pcmO: <NVIDIA (0x001c) (HDMI/DP 8ch)> (play)

pcml: <NVIDIA (0x001c) (HDMI/DP 8ch)> (play)

pcm2: <Conexant CX20590 (Analog 2.0+HP/2.0)> (play/rec)
default

On OpenBSD it’s similar, a SADA-like driver (Solaris Audio API), that has a
different and much simpler mapping:

e /dev/audioN Audio device related to the underlying device driver (for
both playback and recording)

e /dev/sound same as /dev/audioN, for recording and playback of sound
samples (with cache for replaying samples)

e /dev/mixer to manipulate volume, recording source, or other mixer func-
tions

e /dev/audioctlN Control device, accept same ioctl as /dev/sound

e /dev/midiN Control device

On Linux, the ALSA kernel module also maps the components to operational
interfaces under /dev/snd/. The files in the latter will generally be named
aaaCxDy where aaa is the service name, x the card number, and y the device
number. For example:

o pcmC?D?p pcm playback devices

e pcmC?D?c pcm capture devices

e controlC? control devices (i.e. mixer, etc.) for manipulating the internal
mixer and routing of the card

e hwC?D? hwdep devices

e midiC?D? rawmidi devices - for controlling the MIDI port of the card, if
any

e seq sequencer device - for controlling the built-in sound synthesizer of the
card, if any

e timer timer device - to be used in pair with the sequencer

The devices will mostly be mapped as either PCM devices, pulse-code modula-
tion — the digital side of the equation, or as CTL devices, the controller and
mixer, or as MIDI interface, etc..

The driver status and configuration interface is in the process information

pseudo-filesystem under /proc/asound (instead of kernel tunable like on most
BSDs).
The following long list should give you an idea of what’s available:

12

e /proc/asound/

o /proc/asound/cards (RO) the list of registered cards

o /proc/asound/version (RO) the version and date the driver was built

o /proc/asound/devices (RO) the list of registered ALSA devices (ma-
jor=116)

o /proc/asound/hwdep (RO) the list of hwdep (hardware dependent) con-
trols

o /proc/asound/meminfo (RO) memory usage information this proc file
appears only when you build the alsa drivers with memory debug (or full)
option so the file shows the currently allocated memories on kernel space.

o /proc/asound/pcm (RO) the list of allocated pcm streams

e /proc/asound/seq/ the directory containing info about sequencer

e /proc/asound/dev/ the directory containing device files. device files are
created dynamically; in the case without devfs, this directory is usually
linked to /dev/snd/

e /proc/asound/oss/ the directory containing info about oss emulation

e /proc/asound/cards info about cards found in cardX sub dir

o /proc/asound/cardX/ (X = 0-7) the card-specific directory with informa-
tion specific to the driver used

— id (RO) the id string of the card
— pcm?p the directory of the given pcm playback stream

pem?c the directory of the given pecm capture stream

pcm??/info (RO) the pem stream general info (card, device, name,

etc.)

pcm??/sub?/info (RO) the pcm substream general info (card, device,

name, etc.)

pcm??/sub?/status (RO) the current of the given pcm substream

(status, position, delay, tick time, etc.)

— pcm??/sub?/prealloc (RW) the number of pre-allocated buffer size
in kb. you can specify the buffer size by writing to this proc file

For instance we can issue:

$ cat /proc/asound/cards

0 [HDMI]: HDA-Intel - HDA ATI HDMI
HDA ATI HDMI at 0xf0244000 irq 32
1 [Generic]: HDA-Intel - HD-Audio Generic
HD-Audio Generic at 0xf0240000 irq
16
2 [LX3000]: USB-Audio - Microsoft LifeChat
LX-3000

C-Media Electronics Inc. Micros...

That gives us an idea of how different Unix-like OS dynamically load the driver
for the device, and then maps it to the filesystem, often also giving an interface
to get their status and configure them. Now let’s dive into other aspects of OSS
and ALSA, more on the user-side of the equation.

13

We now have an overview of:

o The basic logical components a card can have (input/output devices, mix-
ers, control mechanisms, etc..)

e How to go from analog to digital and vice-versa

e Some libraries and why software use different ones

e The mapping of hardware devices to the filesystem when discovered

14

Advanced Linux Sound Architecture (ALSA)

Now let’s dive into ALSA in particular and see what’s the deal with it.

If you want to get dizzy you can look at this spaghetti diagram. It does more to

confuse you than to clarify anything, so it fails as far as meaning is concerned.
G

P A
e

W%

' mg\@.&-@

T o
e
BAVIES ey NN

~H—C\/

< S
N @," ‘Qr

ALSA, the Advanced Linux Sound Architecture is an interface provided by the
Linux kernel to interact with sound devices.

We've seen so far that ALSA is a kernel module and is responsible for loading
drivers for the appropriate hardware, and also maps things in the filesystem
on /proc/asound and in /dev/snd. ALSA also has a library, a user-facing API
for real and virtual devices, and configuration mechanisms that let you interact
with the internal audio concepts. Historically, it was designed to replace OSS
(Open Sound System) on Linux, which we’ll see in the next section. ALSA
provides an OSS emulation if needed.

Some features that are often cited:

o Up to 8 audio devices at the same time, modularized

e MIDI functionality like Hardware-based MIDI synthesis.
e Perform hardware mixing of multiple channels

o Full-duplex operation.

e Multiprocessor-friendly

¢ thread-safe device drivers

Let’s see the following: How ALSA represents devices, what are PCM and CTL,
plugins, configurations, and tools.

ALSA is good at doing automatic configuration of sound-card hardware. It does
that by grouping different cards based on “chipset” and families, — similar cards
will have similar interfaces. It also fills the gap by using plugins when it comes
to the name of controls by deliberately keeping them similar. For example,
the master volume is always called “Master Volume”, even when not physically
there, the abstraction will exist as a software control plugin.

This grouping allows developers to interact with sound devices in a unified way
which makes it much simpler to write applications.

We've previously seen how ALSA maps devices in entries in /dev/snd (pem,

15

control, midi, sequencer, timer) with their meta-information in /proc/asound.
Moreover, ALSA split devices into a hierarchy.
ALSA has the concept of cards, devices, and subdevices.

A card is any audio hardware, be it a USB audio headset, an audio chip, or
virtual sound card, etc.. Real hardware are backed by kernel drivers while
virtual ones live in user-space. It has 3 identifiers:

e A number, which is incremental after each new insertion (so could change
after reboot)

e An ID, which is a text identifier for a card. This is more unique and
consistent

¢ A name, another text identifier, but not a useful one.

Devices are subdivision of a card, for playback or capture. For example it could
be “analog input 4 output”, “digital output”, etc.. It dictates the type of device
that the card is, what it can do and is capable of processing. A sort of “profile”
for the card. Same as with cards, devices have three identifiers: Number, 1D,
and Name.

Only one device is active at a time, because the device is the current “function’
that the card takes.

i

Devices themselves have at least one subdevice. All subdevices share the same
playback (output) or recording (input) stream. They are used to represent avail-
able slots for hardware mixing, joining audio in hardware. However, hardware
mixing is rarely used so there is usually a single subdevice unless it is a surround
sound system.

Overall, that gives us this type of notation.

card CARD_NUMBER: CARD_ID [CARD_NAME], device
DEVICE_NUMBER: DEVICE_ID [DEVICE_NAME]
Subdevice #SUBDEVICE_NUMBER: SUBDEVICE_NAME
Example:
card 2: LX3000 [Microsoft LifeChat LX-3000], device O:
USB Audio [USB Audio]
Subdevices: 1/1
Subdevice #0: subdevice #0

Alternatively, you can go directly to the /proc tree, which we’ve seen previously,
and list cards with cat /proc/asound/cards.

2 [LX3000]: USB-Audio - Microsoft LifeChat
LX-3000
C-Media Electronics Inc. Microsoft
LifeChat LX-3000 at
usb-0000:00:12.0-4,
full

16

A common notation for ALSA devices looks like hw:X,Y where X is the card
id and Y the subdevice id. You do not need the device id because only one can
be active at a time.

You can list playback devices by issuing aplay -l and recording devices with
arecord -l (and MIDI devices with amidi -I).
Another useful script to dump info about the system is alsa-info.sh.

All ALSA clients have to interface with objects in the ALSA world, the most
important two are the PCM (pulse code modulation) and the CTL (control)
which we’ve briefly mentioned before.

PCM objects are the representation of a sound stream format used for data flow.
These PCMs can be chained and are typically attached to a hardware at one
end, but can also be attached to other things such as the filesystem, a server, or
even dropping audio completely. When PCMs are chained we call them slave
PCM, a virtual PCM, which is an extra step of indirection. The PCM streams
connected to the hardware need to follow its characteristics: that is they need
to have the right sample rate, bit rate (sample width), sample encoding (endi-
aness), and number of channels (mono, stereo, etc..). List them using aplay -L.
CTL objects are control objects telling ALSA how to process non-audio data.
That includes things such as volume controls, toggle controls, multiple-choice
selections, etc.. These controls can be put in one of 3 categories: playback con-
trol (for output device), capture control (for input device), and feature control
(for special features).

There are other ALSA objects such as MIXER and UCM (Use Case Manager
- for presets separation, like notifications, voice, media, etc..) but they are not
important to get the concept across so we’ll skip them.

These objects can be defined, modified, and created in ALSA configurations
and are often templatized and manipulated through plugins. A lot of them are
automatically created by ALSA itself to create “profiles” for cards. Most of
ALSA processing is delegated to plugins.

Clients will then read the configuration and most often use the default PCMs
and CTL, if not selected explicitly by the user. Practically, that means the
software will write or read audio from a stream (PCM) and control it (usually
volume) through the CTL or MIXER interfaces.

For example:

e aplay and other players use the PCM interface
o alsactl uses the ctl (control) interface

e amixer uses the mixer interface

e amidi the rawmidi interface and so on.

e alsaucm the ucm interface

As far as configuration location is concerned, clients will load alsa.conf from the
ALSA’s data directory, so /usr/share/alsa/alsa.conf, and in turn this configu-
ration will load system- and user-wide configurations in /etc/asound.conf and
~/.asoundrc or ~/.config/alsa/asoundrc respectively.

17

Change will take place as soon as clients re-read the configuration, normally
when they are restarted.

ALSA configuration format is notoriously complex, almost Turing complete. It
consists of a dictionary containing key/value pairs of names and object of a
given type.

For example, the pcm key will contain the list of all PCM definitions, and the
ctl key will contain the list of all CTL definitions.

The statements are of the form:

KEY1.KEY2.KEY3... VALUE

KEY1 being one of the object mentioned (pem, ctl, and others).

The configuration format supports different value types, they could be either
string, number, compound (using braces {}), or reference another value.

Additionally, the configuration is hyper flexible, allowing different ways to define
the dictionary, which ALSA will later on resolve internally by adding them to
its internal global dictionary that has all the keys it accumulated while reading
the confs.

For instance, these are equivalent notations, from multiline definition, to using
the = sign between params and values, comma or semicolon between consecutive
param assignments. Like so:

pcm.a.b 4
pcm.a.c "hi"

is equivalent to

pcm.a {

b 4

c "hi"
}

is equivalent to

pcm.a = {

b = 4;

c = "hi";
3

The configuration format has special statements that begin with @ such as @func,
@hooks, and @args which have different behavior. @func is used to call functions,
@hooks to load files, and @args to define internal variables that can be used
within a compound variable type.

Example:

18

{ @func getenv vars [ENVVAR1 ENVVAR2 ...] default
VALUE }

Will turn into a string from the specified environment variable. Each environ-
ment variable is queried and the first to match is used, otherwise VALUE.

Additionally, you can control how ALSA will act when it finds conflicting entries
in the dictionary, how it will merge them. This is done by prefixing the key with
one of the following:

e ! the exclamation mark will cause the previous definition to be overridden
instead of adding new values, removing all of the param and sub-param.
('pem would delete all that is under pcm)

e 7 the question mark will ignore the assignment if the param exists

e +and - respect the type of any earlier assignment, + creates a new param
when necessary, — causes error if param didn’t previously exist.

Alright, so now we know how to create a gigantic dictionary of ALSA sound-
related objects, how do we actually make use of them?

What we do is create a name under one of these object and give it a type. This
type is a plugin that will dictate what to do with this object. The plugins take
different configurations depending on what they do, so you’ll have to consult
the docs. That gives rise to something like this:

pcm. NAME {
type TYPE
b

ctl.NAME {
type TYPE

}

slave_pcm.NAME {
pcm PCM

}

So ALSA consists mostly of plugins. You can find the external ones that were
installed in: /usr/lib/alsa-lib, and the others are internal. For example, check
the documentation for the internal pcm plugins.

For obvious reasons, the most important pcm plugin is the hw hardware one,
which is used to access the hardware driver. This plugin takes as parameters
things that we mentioned such as the card number, the device, subdevice, the
format, rate, channels, etc..

19

https://www.alsa-project.org/alsa-doc/alsa-lib/pcm_plugins.html

Now things should start to make sense: We have clients reading ALSA configu-
rations and manipulating objects having a common interface, which are handled
in the backend by plugins, which often end up on the hardware.

Another important plugin is plug which performs channel duplication, sample
value conversion, and resampling when necessary. That is needed if a stream
has the wrong sample rate for a hardware. You can use aplay -v to make sure
the resampling actually happens.

Yet another one is the dmiz pcm plugin, the direct mix plugin, which will will
merge multiple pcm streams into an output pcm. This is software mixing, which
is much more prominent these days compared to hardware mixing.

There really is a long list of fun plugins that can be used in different scenarios,
so take a look.

Example:

pcm.plugger {
type plug
slave {
pcm "hw:0,0"
}
}

This creates a device called plugger that respect the object interface of pcm.
Whatever is written or read from this plugger will be handled by the plug plugin,
which in turn will use a slave PCM device hw:0,0.

Notice how we used the word “device”, that is because any pcm connected to
a hardware corresponds to an ALSA device. It should start making sense now.
These pcm, for instance, are the ones that get listed when you issue aplay -L or
arecord -L and these are the objects that clients will interact with — they don’t
know if these are even connected to a card or not.

The special name default is used to specify the default object interface. So to
set, and override, the default playback device you can do:

pcm. !default "hw:CARD"

ALSA provides a lot of these objects preconfigured, as generic device templates.
However, sometimes it requires a bit of fiddling to get right and this isn’t obvious
to everyone considering the complexity of ALSA configs.

Sometimes it’s also hard to find a plugin for your case. For example, projects
like alsaequal creates an audio equalizer, and project alsa__rnnoise creates a pcm
device that will remove noise.

These difficulties are part of the reasons why we use sound servers, which we’ll
see in their own sections.

To get a glimpse at what the final ALSA configuration tree is like, I've made a
small script that will dump all the configuration.

20

https://github.com/venam/aconfdump

So, we've seen ALSA’s representation of components, the common objects such
as PCM and CTL, how to create them in the flexible configuration format,
how the configuration is mostly plugins, how these plugins will use the sound
components, and how clients use the PCM without caring what’s happening
under the hood.

21

Open Sound System (OSS) and SADA

0SS, the Open Sound System, is the default Unix interface for audio on POSIX-
compatible systems. Unfortunately, like such standards, it isn’t compatible
everywhere. It can be perplexing to understand because different systems have
branched out of it.

Untill OSS version 3 Linux was using OSS. The company developing it, 4Front
Technology, chose in 2002 to make OSSv4 a proprietary software, then in 2007
they re-released it under GPL.

For that reason OSSv4 isn’t used as the default driver of any major OS these
days, but can still be installed manually. However, not many applications have
support for it and it might requires a translation layer.

In the meantime, Linux had switched to ALSA because of the license issues and
the shortcomings of OSS, namely it couldn’t play multiple sounds simultane-
ously, allocating the sound device to one application at a time, and wasn’t very
flexible.

Similarly, in the BSD world some chose to continue to extend OSS and some
only got inspired by it to do something else. FreeBSD continued with its fork
of OSS by reimplementing the API and drivers and improving it along the way.
They added in-kernel resampling, mixing, an equalizer, surround sound, bit-
perfect mode (no resampling or mixing), and independent volume control per
application.

On the other side, NetBSD and OpenBSD chose to go with their own audio
API that is Sun-like (SADA, Solaris Audio API aka devaudio), with an OSS
compatibility mode to keep backward compatibility.

Solaris an OpenSolaris use a fork of OSSv4 called Boomer that combines OSS
together with Sun’s earlier SADA API, similar to what OpenBSD does.

Due to this arduous history, it is not guaranteed that any of these OS will use
a compatible OSS version or OSS layer.

Like ALSA, OSS audio subsystem provides playback, recording, controller,
MIDI, and others. We’ve seen that these are mapped to special files by the
driver, all starting with /dev/dsp. /dev/sndstat can be used to list which driver
controls which device.

Unlike ALSA where clients interact with PCM and CTL objects, in OSS there
is a common API that is used to interact with the special files that were
mapped on the filesystem. That means that developers will rely on a more
Unix/POSIX like model using the common system calls like open, close, read,
write, ioctl, select, poll, mmap, instead of custom library functions.

What these functions do depends on the OS and OSS version. For example,
ioctl lets you interact with the generic device type features, as can be seen here.
That gives rise to much simpler programs, check this example

One thing the FreeBSD audio frameworks support is the use of mmap to allow
applications to directly map the audio buffer, and use ioctl to deal with head/tail

22

http://opensound.com/
http://opensound.com/
http://manuals.opensound.com/developer/ioctl.html
http://manuals.opensound.com/developer/singen.c.html

synchronization. ALSA on Linux does the same.

Similarly to OSS, on OpenBSD and NetBSD, the 3 exposed devices /dev/au-
dioN, /dev/audioctiN, and /dev/mixerN can be manipulated with read, write,
and mostly ioctl. You can take a look in the man 4 audio to get an idea.

When it comes to configuring specific OS related functionalities such as how to
mix sound, selecting the sample rates and bit rates, choosing the default output
and input hardware, etc.. That depends entirely on the implementation of the
particular operating system.

On FreeBSD, audio configurations are available by configuring kernel tunables
via sysctl or set statically at boot. For example, dev.pcm.0 is the first instance
of the pem driver and hw.usb.uaudio is the usb audio hardware settings. You’ll
known which one is which by consulting /dev/sndstat.

Setting the default sound device on FreeBSD:

sysctl hw.snd.default_unit=n

Where n is the device number.
You can also set the default value for the mixer:

sysctl hint.pcm.0.vol="50"

As you can notice the mixer is part of the pcm driver. This driver supports
Volume Per Channel (VPC), that means you can control the volume of each
application independently.

As for OSSv4, it offers configuration files for each driver, along with its own set
of tools like ossinfo, ossmiz, vmizctl, etc..

The configurations can be found under /usr/lib/oss/conf/, the $OSSLIBDIR.
It contains audio config files for different drivers with their tunables. It can
help set basic settings such as: virtual mixers, quality of sound, sample rate,
etc.. You can consult the man page of each driver to check their settings man
7 0ss__usb.

Note that OSSv4 isn’t as flexible and requires turning the sound on and off for
the settings to take effect.

On OpenBSD and NetBSD, similarly to FreeBSD, settings are done through
kernel tunable. The SADA-like system also has multiple tools such as mizerctl
and audioctl to make it easier to interact with the audio driver variables.

For example, you can change the sample rate on the fly with:

audioctl -w play.sample_rate=11025
OpenBSD stays true to its security and privacy aspect by disabling recording
by default, which can be re-enabled with:

$ sysctl kern.audio.record=1
$ echo kern.audio.record=1 >> /etc/sysctl.conf

23

As you can see, multiple systems using different APIs and configurations isn’t
practical and very limiting. That is why OpenBSD created a layer on top called
sndio, a sound server that we’ll discover in a bit.

Overall, we’ve seen the idea of the OSS-like systems. They expose devices in
the file system and let you interact with them through the usual Unix system
calls. To configure these devices you have to use whatever way the OS gives
you, mostly kernel tunables.

While kernel tunables don’t offer the crazy configurability that ALSA does, these
audio stacks can still give more or less the same basic features by having them
in the kernel. Like on FreeBSD, where the mixing of streams and volume per
application control happens out of sight.

As with anything, the lower in the stack it is, the less flexible it is, but the more
stable, efficient, and abstract it is.

new algorithm

N

application code

kemel code

E £
g E device-driver code
E device-controller code (hardware)
i ‘@ device code (hardware)

complexity of system

increased fexibility }

L
1
i

24

Sound Servers

Sound servers are neither kernel modules nor drivers, but are daemons that run
in user-space to provide additional functionalities. They are there to both raise
the flexibility and to have a more abstract and common layer.

The operations a sound server allow range from transferring audio between
machines, to resampling, changing the channel count, mixing sounds, caching,
adding audio effects, etc.. Having these operations done in a modular way in a
sound server is more advantageous than having them in the kernel. Moreover,
having a sound server could mean having the same API for all audio regardless
of the underlying kernel module or API used. So you won’t have to worry about
the interoperability of running on OSS or ALSA or anything else.

There are many sound servers available, some are deprecated like aRts and
ESD, others are in use such as sndio, JACK, and PulseAudio, and new ones
are coming out and being pushed into distributions like PipeWire. Every one
of these has different features, supports for all kinds of protocols, and run on
multiple operating system flavors.

25

sndio

sndio is the default sound server on BSDs today. It is a small, compact, audio
and MIDI framework and user-space server developed by OpenBSD. The server
is so simple it doesn’t even need a configuration.

sndio’s main roles are to abstract the underlying audio driver and to be a single
point of access instead of requiring each application to get raw access to the
hardware.

Having a sound server solves the issue of the fracture between all OSS imple-
mentations. It creates a new standardized layer.

Let’s mention some of sndio features:

e Change the sound encoding to overcome incompatibilities between soft-
ware and hardware. (can change sample rate and bit rate)

o Conversions, resampling, mixing, channel mapping.

¢ Route the sound from one channel to another, join stereo or split mono.

¢ Control the per-application playback volume as well as the master volume.

e Monitor the sound being played, allowing one program to record what
other programs play.

« Use of ticking mechanism for synchronization (maintained after underruns,
when buffer isn’t filled fast enough) and latency control

e Support network connections

sndiod, the server, operates as follows: it creates a sub-device that audio pro-
grams connect to as if it was one of the device created by the driver (a real
hardware). Thus, during playback or recording, sndiod will handle the audio
streams and commands for all programs and take care of the result on the fly.

In sum, sndiod acts as a proxy while giving a similar interface as the kernel API
on BSD (read, write, ioctl).

All programs connected to the same sub-device will be part of the same group,
which gives a way to process and configure sound according to which sub-device
is used.

These sub-devices are defined in a similar string format:

type [@hostname] [, servnum] /devnum [.option]

Which, as you can see, allows to connect to a remote host.
Here are some examples:

snd/0
Audio device of type snd referred by the first -f
option passed
to sndiod(8) server
snd/0.rear
Sub-device of type snd registered with "-s rear"
option

26

default
Default audio or MIDI device.

The server sndiod doesn’t have any configuration files, so everything is passed
on the command line as an argument. Here are a couple examples of how to do
that.

Start the server with a 48kHz sample rate, 240 frame block size (fragment-
size), and 2-block buffers (240%2) (buffer-size) (See previous Analog to Digital
& Digital to Analog (ADC & DAC) for more info on what these mean), this
creates a 10ms latency.

$ sndiod -r 48000 -b 480 -z 240

Start sndiod by creating the default sub-device with low volume (65) and an
additional sub-device called maz with high volume (127). These will map to
snd/0 and snd/0.max respectively.

$ sndiod -v 65 -s default -v 127 -s max

This example create the default sub-device plus another sub-device that out-
puts to channels 2:3 only (the output speaker will depend on the card). These
will map to snd/0 and snd/0.rear respectively.

$ sndiod -s default -c 2:3 -s rear

The sndioctl utility is a helper tool for audio device status and control through
sndio. For example, you can change the output level and mute certain sub-
devices.

$ sndioctl output.level=+0.1
$ sndioctl output.mute=1
$ sndioctl -f snd/O0 output[0].level+=0.1

The commands passed on the right depend on the actual audio device.

sndio is not only available for BSD, it also has a backend for ALSA, so it can
run on top of it.

It is generally well supported by major softwares like media players and web-
browsers. However, if a program cannot interface with sndio there are ALSA
plugins that provice a PCM that can connect to a sndiod server.

In this sections we’ve seen sndio, a very simple sound server that creates sub-
devices on the filesystem for any type of audio device, output, input, midi,
control, etc.. By arbitraging resources, it is able to calibrate sound streams to
fit the hardware sampling and bit rate support. We’ve also seen how to start
the server that has no config, and how to use sndioctl to interact with it.

27

aRts (analog Real time synthesizer) and ESD or
ESounD (Enlightened Sound Daemon)

aRts and ESD or ESounD are two deprecated sound servers (audio daemons).
Like all sound servers, they accept audio from applications and feed it to the
hardware, while manipulating the stream format so that it fits it (resampling
and others, you know the drill).

aRts was part of the KDE project and its main big cool feature was that it had
a simulation of analog synthesizer.

EsounD was the sound server for the Enlightenment desktop and GNOME. It
had similar functionality as any sound server but additionally it had two special
cool features: desktop events sound handling, and a mechanism to pipeline audio
and videos.

The different teams partnered to synchronize on their projects and have a single
sound server. This split EsounD and aRts into pieces: the desktop events sound
handling is now libcanberra (see the Libraries section), the pipeline of audio and
video is now GStreamer (see the Libraries section), and the sound server was
extracted unto PulseAudio (see next section on PulseAudio).

28

PulseAudio

audio sound
device routing processing
drivers managing
streams
power
" PulseAudi
u Se u IO scheduling
/O
network
streaming compatibility
, des ktgp layers
integrations
PulseAudio

PulseAudio tends to trigger online flame wars, which are non-constructive.
Let’s see what PulseAudio is, what features it has, some examples of it, its design,
the definition of its internal objects, the sinks and sources, how it represents
things we’ve seen such as cards/devices/profiles, how it is configured, how the
server and clients start, the modular mechanism, what some modules/plugins
do, the compatibility with different protocols, the desktop integration, some of
the common frontends, how supported it is, and how to temporarily suspend it.
There’s a long road ahead!

PulseAudio What Is It?

PulseAudio is a sound server for POSIX OSes, like sndio and others, so its job
is similar: abstracting the interaction with the lower layers, whichever backend
that is, and offering flexibility in audio manipulation — a proxy for sound ap-
plications.

Additionally, PulseAudio’s main focus is toward desktop users, as it was pri-
marily created to overcome the limitations of EsounD and aRts. It is heavily
influence by Apple’s CoreAudio design.

So far, PulseAudio is mainly targeted at the Linux desktop but there exists
ports to other operating systems such as FreeBSD, Solaris, Android, NetBSD,
MacOS X, Windows 2000, and Windows XP. However, some of the features
require integration with the system and so are platform-specific, particularly:
timer-scheduler, hot-plug features, and bluetooth interaction. The features in
PulseAudio come as “external components” or also called “plugins”, so these

29

functionalities aren’t inherent to the core server.

Let’s have a look at a list of features that PulseAudio provides.

Extensible plugin architecture (a micro-kernel arch with dynamically load-
able modules via dlopen)

A toolset to be able to manipulate the sound server on the fly

Support for multiple input and output streams

Flexible, implicit sample type conversion and resampling

Ability to fully synchronize multiple playback streams

Support interacting with audio streams of various protocols and backends,
be them local or on a network

Per application independent volume control

Automatic management and setup of audio device, hotplug, via policies
and restoration mechanism (mostly ALSA backend only)

Sound processing ability and creation of audio pipeline chains: custom
modules, mixing, sample rate conversion, echo cancellation, etc..

Sample cache: in-memory storage for short sounds, useful for desktop
events

Low and accurate latency behaviour: uses features such as clocking and
rewinding to keep the buffer responsive and avoid glitches. This is done
via a timer-based scheduler per-device. (See previous Analog to Digital
& Digital to Analog (ADC & DAC) for more info on what these mean)
(ALSA backend only)

Power saving: due to the use of default latency and timer-based scheduler
per-device, there is no need to have a high number of interrupts. (ALSA
backend only)

Other desktop integration: X11 bells, D-Bus integration, Media role, hard-
ware control, GConf, etc..

In practice that allows to do things like:

Automatically setting up a USB headset when it’s connected, remembering
the configuration it was in the last time it was used.

A GUI for controlling the sound of specific applications and deciding
wether to move the audio stream from one device to another on the fly.
Dynamically adding sound processing and filters to a currently running
application, such as noise cancellation.

Pulseaudio Overall Design

The PulseAudio server consists of 3 logical components:

A daemon: the piece that configures the core, loads the modules, and
starts the main loop

A core: based on libpulsecore this is a building block and shared environ-
ment for modules.

30

Application
layer

) & N\ . .
ena =
day e Zeroconf
module
Tunnel
sink
Tunnel
source

Linux
kemel

Hardware

N A

aRTS libgnome

DE GNOME
PP ESDapp app

Kl
A
\

\ ¥

UNIX/TCP
native
protocols EsounD
emulation
protocol
FulseAudio
process
HAL
module
PulseAudio
server core ALSA
sink
A

HAL
processes

HAL
subsystem

drivers

ALSA/OSS Hardware
hardware st

The
Other Pulse servers Applications listening and broadcasting over RTP
network

PulseAudio Engine Layer

31

e Modules: dynamically loaded libraries to extend the functionality of the
server, relying on the libpulsecore library.

Inside the PulseAudio server lives different types of objects that we can manipu-
late, understanding these objects means understanding how PulseAudio works:

o format info

e source

e source output

e sink

e sink input

e card

e device port

« module

o client

e sample cache entry

Pulseaudio Sink, Sink Input, Source, and Source Input

The source output and sinks inputs are the most important concepts in PulseAu-
dio. They are the representation of audio streams. A source device generates a
stream that is read/receive to a source output, like a process generating sound
or a capture device, and a sink device is written/sent to via a sink input, like a
sound card, a server, or a process.

In sum, sinks are output devices and sources are inputs devices: a source will
be read unto a “source output” stream and the “sink input” stream will write
to the sink device.

There can be virtual devices and virtual streams, and the sink input and source
output can be moved from one device to another on the fly. This is possible
because of the rewinding feature, each stream having its own timer-scheduler.

Additionally, sink monitors are always associated with a sink and get written to
when the sink device reads from its sink inputs.

PulseAudio manages these stream in the ALSA backend using a timer-based
scheduler to make them efficient for desktop. (See previous Analog to Digital &
Digital to Analog (ADC & DAC) for more info on what these mean)

Every source, sink, source output, and sink input can have their own audio pa-
rameters, be it sample format, sample rate, channel map, etc.. The resampling
is done on the fly and PulseAudio allows to select between different resamplers in
its configuration and modules (speex, ffmpeg, sre, sox, trivial,copy, peaks, etc..).
It’s good to note that when multiple sink inputs are connected to the same sink
then they automatically get mixed.

Each of these components can have their own volume. A configuration called
“flat volume” can be set so that the same volume will be used for all sink inputs
connected to the same sink.

This flexible concept of streams and devices can be used effectively with a couple

32

chunks chunks
----------- > e o
>| source output sink input
source > sink
>| source output sink input

microphone recording playback headphones
client stream client stream

sink and source

of modules that allow juggling with them. For example, the module-loopback
forwards audio from a source to a sink, it’s a pair of source output and sink
input with a queue in between. If you load it and the source is your microphone
you’ll then be able to hear your voice as echo.

pactl load-module module-loopback
pactl unload-module module-loopback # to unload it

Another example is the module-null-source and module-null-sink which will drop
data. As with other sinks it will have a monitor associated with it, thus you
can convert a sink-input to source-output, basically turning the audio that was
supposed to be written to a device back as a readable stream.

We’ll see more examples in the module section, but this is enough to whet your
appetite.

You can use the tool pacmd to check each of these and the properties associated
with the object:

pacmd list-sources

pacmd list-source-output
pacmd list-sinks

pacmd list-sink-inputs

For now, in the info shown from the above commands, you should at least
understand a couple of the information shown such as the latency, the volume,
the sample format, the number of channels, the resampling method, and others.

NB: the default source and sink are often abbreviated as @DEFAULT SOURCE@
and @QDEFAULT _SINK in PulseAudio configs and commands.

Another example, changing the volume via pactl of a sink by its index:

33

pactl set-sink-volume 0 +59
pactl set-sink-mute 0 toggle

Pulseaudio Internal Concepts: Cards, Card Profile, Device
Port, Device

We got the idea of streams, but we still need to understand the mapping of
actual devices into PulseAudio. This is represented by the concept of cards
which could be any sound card or bluetooth device. A card has a card pofiles,
device ports, and devices.

A card correspond to a mapping related to the driver in use. When using ALSA,
this is the same card as an ALSA card.
For example:

aplay -1
card 2: LX3000 [Microsoft LifeChat LX-3000], device O:
USB Audio [USB Audio]
Subdevices: 1/1
Subdevice #0: subdevice #0

pacmd list-sinks | grep card
driver: <module-alsa-card.c>
card: 5
<alsa_card.usb-C-Media_Electronics_Inc._Micros...
alsa.card = "2"
alsa.card_name = "Microsoft LifeChat LX-3000"
alsa.long_card_name = "C-Media Electronics Inc.
Micros..."

The card has profiles which are, when using ALSA, equivalent to the list of pecm
objects of ALSA that are attached to the hardware, which you can list using
aplay -L.

You can see the list of profiles discovered by PulseAudio by doing pacmd list-
cards and checking the profiles and active profile sections. Note that only one
profile can be active for a card at a time.

In practice, a profile is an opaque configuration set of a card, defining the
backend-specific configuration of the card, the list of currently available device
ports, devices, configurations, and audio parameters. These are all templatized
by ALSA as we’ve seen before.

ALSA manages this when it’s the drivers, however PulseAudio doesn’t take
the profiles as they are, it sometimes uses a mapping to bind them into a
new format that will result in a sink or source being created for the card.
This is done via a configuration found in /usr/share/alsa-card-profile and
Jusr/share/pulseaudio/alsa-mizer/. You can have the mapping of different
ALSA objects to PulseAudio ones in there.

34

For example, I have the following for the MIXER, interface, which tells PulseAu-
dio I can use mute, and capture:

/usr/share/alsa-card-profile/mixer/paths/iec958-stereo-input.conf
/usr/share/alsa-card-profile/mixer/paths/iec958-stereo-output.conf

After finding the right profile we can now know what are the device ports.
They correspond to the single input or output associated with the card, like a
microphone or speaker. Multiple device ports may belong to a card.

Then device, be it a source or sink, is the representation of the currently active
producer or consumer, that is a card+a device port. For example, playing audio
as digital stereo output on a USB headset.

Another mapping is possible using ALSA UCM (Use Case Manager) to group
cards, but we’ll skip over it. Use case management is used to abstract some of
the object configuration like the MIXER, (higher level management of CTL) so
that you can play the same type of sounds together: notifications, media, video,
VOIP, etc..

In summary, that gives the following relation between ALSA backend and
PulseAudio objects.

e The PulseAudio ALSA backend will automatically create the cards, card
profiles, device ports, sources, and sinks.

e A PulseAudio card is an ALSA card

e A PulseAudio card profile is an ALSA configuration for a certain card,
this will dictate the list of available device ports, sources, and sinks for
PulseAudio. These can be mapped using configs in a dir.

e A PulseAudio device port defines the active inputs and outputs for a card
and other options, it’s the selection of one profile function.

o Finally, the source and sink are associated with an ALSA device, a single
pem attached to the hardware. A source or sink get connected to a device
port and that defines its parameters (sample rate, channels, etc..)

In general, whatever the backend, be it ALSA, OSS, or Bluetooth, PulseAudio’s
goal is to find out what inputs and outputs are available and map them to device
ports.

Pulseaudio Everything Is A Module Thinking

As far as the PulseAudio server is concerned, it only manipulates its internal
objects, provides an API, and doesn’t do anything else than host modules. Even
the backends like ALSA are implemented as modules.

That gives rise to a sort of micro-kernel architecture where most of the func-
tionalities in the server are implemented in modules, and there’s a module for
everything. Most of what we’ve mentioned already is done via a module. Let’s
still show a list of some of them.

o Device drivers

35

e Protocols

¢ Audio routing

e Saving information

o Trivia like x11 bell

¢ Volume control

¢ Bluetooth

o Filters and Processing

Some modules are autoloaded in the server like the module-native-protocol-uniz,
which is PulseAudio’s native protocol, and others are loaded on the fly.

Even the protocol to load modules and interact with the server via the command-
line interface is a module in itself: module-cli-protocol-uniz/tcp.

If you are interested in knowing about the ALSA backend integration, it is done
by the module-alsa-card.

There’s really a lot of modules, the list of the ones that come with the PulseAudio
server default installation can be found here and here. There are also many
user contributed modules, which you can place on disk in your library path
Jusr/lib/pulse-/modules/.

To list the currently loaded modules use the following:

pacmd list-modules

NB: It can be quite eery to see that PulseAudio has its own module mechanism
while we’ve seen earlier that ALSA does a similar thing through its configuration.
However, keep in mind that PulseAudio is relatively easier to use, can work on
top of different backends, not only ALSA, and has a different concept when it
comes to audio streams (source-output and sink-input).

Now let’s see how to load new modules and configure them.

Pulseaudio Startup Process And Configuration

Before we see how to load modules into the server, we first need to check how
to run the server.

The PulseAudio server can either run in system-wide mode or per-user basis.
The latter is preferred as it is better for desktop integration because some mod-
ules use the graphical desktop. It is usually started during the setup of the user
session, which is taken care of by the desktop environment autostart mechanism.
These days, with the advent of the systemd framework project, PulseAudio is
often launched as a user service.

$ systemctl --user status pulseaudio
pulseaudio.service - Sound Service
Loaded: loaded
(/usr/lib/systemd/user/pulseaudio.service;
enabled; vendor preset: enabled)

36

https://www.freedesktop.org/wiki/Software/PulseAudio/Documentation/User/Modules/
https://gavv.github.io/articles/pulseaudio-under-the-hood/#module-list

Active: active (running) since Sat 2021-02-06
14:36:22 EET; 19h ago
TriggeredBy: pulseaudio.socket
Main PID: 2159374 (pulseaudio)
CGroup:
/user.slice/user-1000.slice/user@1000.service/app...sli
2159374 /usr/bin/pulseaudio --daemonize=no
--log-target=journal
2159380 /usr/lib/pulse/gsettings-helper

Another way to start the PulseAudio server is to not start it all. That’s surpris-
ing, but with the default configuration clients will autospawn the server if they
see that it’s not running.

The reverse is also true, there is a configuration to autoexit when no clients have
used the server for a certain period.

This is how clients start:

o Initialization: finding the server address from somewhere (environment
variable, X11 root window, per-user and system-wide client conf files)

« connect: depending on the protocol used (native, tcp localhost, or remote)

e autospawn: if enable spawn a server automatically

« authenticate: using cookies found somewhere (environment variable, X11
root window, explicit, per user or system wide conf, per-use home dir)

The server starts by reading the server configurations, and then loading the
modules found in the configuration associated with its running stance (system
mode or per-user).

The server configurations are found by first looking in the home directory
~/.config/pulse, and if not found then by looking in the system-wide config
in /etc/pulse. The directory will contain the following configuration files: dae-
mon.conf default.pa system.pa and client.conf.

daemon.conf: contains the settings related to the server itself, things like the
base sample rate to be used by modules that will automatically do resampling,
the realtime scheduling options, the cpu limitation, if flat-volume will be used
or not, the fragment size, latency, etc.. These cannot be changed at runtime.
You can consult pulse-daemon.conf(5) manpage for more info.

client.conf, this is the file that will be read by clients, which we mentioned above.
It contains runtime options for individual clients.
See pulse-client.conf(5) manpage for more info on this one.

default.pa and system.pa are the per-user and system-wide startup scripts to
load and configure modules. Once the server has finished initializing, it will
read and load the modules from this file.

You can also load and manipulate the modules using tools such as pactl and
pacmd, see pulse-cli-syntax(5) manpage for more info.

37

The .conf files are simple key-value formatted files while the .pa are real com-
mand scripts following the CLI protocol format of PulseAudio.

Example:

load-sample-lazy xll1-bell
/usr/share/sounds/freedesktop/stereo/bell.oga
load-module module-x11-bell sample=xl11-bell

When it comes to realtime scheduling, you can either integrate PulseAudio
by giving it priority at the OS level, or you can rely on its integration with
RealtimeKit (rtkit), which is a D-Bus service that changes the scheduling policy
on the fly.

Realtime policy will be applied to all sink and source threads so that timer-based
scheduling have lower latency. This is important if you want to play audio in
bit-perfect mode, that is about not applying any resampling or mixing to the
audio but playing it directly as is.

Pulseaudio Interesting Modules And Features

Let’s now have a look at a couple features and modules. We can’t list them all
as there are so many but let’s try to do a roundup of the most interesting ones.

PulseAudio can talk over many protocols by using different plugins, that in-
cludes:

o Native protocols over different transport (fd, unix, tcp)

o mDNS (Zeroconf)

« RTP/SDP/SAP

« RAOP

« HTTP

o DLNA and Chromecast (Digital Living Network Alliance)
¢ ESound

It also offers control protocols to manage the server itself and audio streams:

e« D-Bus API
e CLI protocol

There are many modules for post-processing and effects because it’s easy to
create a chain of sound. Though only two types of connections are allowed:
source output are connected to source, and sink input to sink. That means
you’ll sometimes need to create indirect adapters to have the scenario you want.
If you need more advanced chains you are probably better off going to another
sound server that specializes in these like JACK.

PulseEffects is a popular software to add audio effects to stream, but note that
it is getting deprecated in favor of PipeWire.

The LADSPA plugin called module-ladspa-sink allows to load the audio process-
ing effects in the common format we’ve seen, and apply them to a sink.

38

https://github.com/wwmm/pulseeffects

There are a couple different equalizers such as the integrated one and others
like prettyeq. An equalizer works by becoming the default output/sink.

There are also noise cancellation filters such as the builtin one module-echo-
cancel and NoiseTorch

Some cool desktop integration features:

o sample cache, basically loading a small sound sample in the server and
cache it (pacmd list-samples)

o multimedia buttons

e publish address on X11 root window properties

e x11 bell integration, using XKB bell events and played from sample cache

e Use of GNOME registry to load modules instead of .pa configuration files.

o Hotplug based on udev/jackbus/coreaudio/bluetooth/bluez5/bluezd so
that cards are automatically detected.

Let’s go over two less known but cool features of PulseAudio: The restoration
DB and the routing process.

PulseAudio keeps track and restores the parameters used for cards, devices, and
streams. When a new object appears the server tries to restore the previous
configuration and might move the streams to another device based on what it
has seen before.

This neat automatic setup is done via an embedded db, which the user can
choose the format. This is done via the following plugins: module-device-restore,
module-stream-restore, and module-card-restore. You’ll find the files ending in
*tdb in your ~/.config/pulse/ if you are using the default configuration. (You
can use tdbtool to inspect them if you’re interested, the author has created tools
to manipulate these files, https://github.com/venam/pa-resto-edit)

The decision regarding this automatic setup is influence by the media role and
other properties associated with the stream and device such as application id
and name.

This information is set programmatically on the stream when communicating
with the server, for example a stream can be set as video, music, game, event,
phone, animation, etc.. (Sort of like the use case scenario)

So based on this information in the restore db, the routing will select which
source or sink is best for a new stream.

The actual algorithm, that takes care of this isn’t obvious, I advise looking at
these two flow charts for more details.

39

https://github.com/keur/prettyeq
https://github.com/venam/pa-resto-edit

Stream Created

Save stream property
“streamrestore-id"
“sink-input-by-media-role: <ROLE>"

Does the stream
have a “role"?

Does the stream save stream property
have a *stream-restore-id"

~application id"? “sink-input-by-application.-id: <ID>"

Is the device
currently available

a saved device for
this "stream-restore-id"?

Use that device

Does the stream Save stream property

have an s i
application name? *sink-input-by-application-name: <NAME>"

Use Falback/Default Device

Use Fallback/Default Device

Save stream property
“streamrestore-id"
*sink-input-by-media-name: <NAME>"

Does the stream
have a

media name

No Device Saving
or Restoration
Possible

Use Fallback/Default Device

(New Device Available

Do we have
a saved device for
this "stream-restore-id"?

Go through all existing streams;
and for each stream

Is the device
currently available

Move Stream to that device

No Change No Change

This can be confusing if you are trying to set a default device because the default
device is only used as fallback when the restore db is in place.

Pulseaudio Tools

There are many tools that can be used to interface with PulseAudio, some are
full front-ends and some are more specific.

We've seen pacmd and pactl which both are used to reconfigure the server at
runtime.

paplay, parec, pacat, pamon, and others are mini-tools used to test features of
PulseAudio.

There are GUIs like pamizer, paprefs (useful to setup simultaneous output),
pavucontrol.

There are TUI like pulsemizer.

Longer lists can be found here for GUI and here for CLI.

40

https://gavv.github.io/articles/pulseaudio-under-the-hood/#gui-tools
https://gavv.github.io/articles/pulseaudio-under-the-hood/#command-line-tools

Pulseaudio Suspending

Sometimes it is useful to temporarily suspend PulseAudio. The utility pasus-
pender has this purpose. It is especially useful when running JACK in parallel
with PulseAudio.

Another way is to use the D-Bus reservation API to allocate a card to a certain
application. This can be done more easily when you include the module for
JACK within PulseAudio.

41

Parchbay

+ % -

A randomvic
port with no connections @ no jamin'...
VLC MIDI anyone? &g mplayer
BLUE
Blue
Ancther blue, but a big one (with a big name]

@ olal
audio-in
d

fw

arew

erwtS4tiwe
tu7s

wre
RED
outro-in
ahahal
3 ole2
connect-me
me-too
don't leave me!
1 olal
audio-out
midi-out
outro-out

catarina

JACK is a sound server, just like sndio, ESD, PulseAudio, and others, but is
designed for professional audio hardware and software. JACK can run on top
of many drivers, including on top and along PulseAudio. While PulseAudio is
designed for consumer audio for desktop and mobile, JACK is made for music
production.

JACK recursive acronym stands for JACK Audio Connection Kit, and as the
name implies it specializes in connecting multiple hardware and virtual streams
together. As you remember, this was not so simple in PulseAudio. It allows to
setup real-time, low-latency connections between streams, and ease the config-
uration regarding parameters like buffer size, sample rate, fragment size, and
others.

The biggest strength of JACK is its integration with professional tooling and its
emphasis on MIDI and professional hardware. In a professional environment you
often have to deal with multiple devices such as mixers, turntables, microphones,
speakers, synthesizer, etc.. The graphical interfaces that come around the JACK
server allow to handle this easily but you have to be knowledgeable in the audio
world to understand the complex configuration.

JACK also has support for specific professional hardware drivers, like a FireWire

42

driver (IEEE 1394) that PulseAudio doesn’t have.

3€ Connections - JACK Audio Connection Kit

ucio I
Readable Clients / Qutput Ports A Writable Clients / Input Port: &
> bridge-59651 v bridge-59651
v REAPER R, meter_1
& outl W, meter_2
& out2 W, meter_3
& out3 " g R, meter_4
j outd \ meter_5
ﬂ outs \ meter_6
ﬂ’ outb \ meter_7
& out? W, meter_8
A autf - R matar O
A Connect || X Disconnect || 3€ Disconnect All | | € Expand Al | | O Refresh |
% JACK Audio Connection Kit [(default)] Started. (® About QjackCtl

I 2
B start W Stop 12.8% ® Quit \
00:00:00 JACK Audio Connection Kit - Qt GUI

E Messages | [CJ Session @ Setup... Interface

DA Patchbay | fl | <4 (B 00 | B (@ sbout.. Version: 0.3.10

Build: Apr 16 2013 10:04:00
[0 | Close |

gjacketl

JACK frontends and software using it are really where it shines, there are so
many interfaces and GUIs for professionals. The most widely used software to
configure it being gjackctl, a connection manager making links between streams
and devices. That’s because JACK separates the concerns: one part is about
managing the connections, in a graph-like fashion, and the other part is only
concerned with passing the audio stream around. This is especially important
when there’s a lot of equipment and should be easily doable via a GUI.

Let’s mention some professional audio engineer software:

o mpk - Virtual MIDI Piano Keyboard

o KX.studio Cadence - A studio with multiple sub-tools like Cadence and
Claudia

o Patchage - visual connection manager

o Catia - anoter visual connection manager

e ardour

e Qtractor

e Carla

¢ QASMixer

e bitwig studio

e drumstick

¢ QSynth

e Helm

o Calf Studio Gear

« LMMS

43

Here is a longer list.
There are also a bunch of specialized Linux distributions:

e https://www.ap-linux.com/
o https://www.bandshed.net/avlinux/
¢ https://linuxmusicians.com/

The audio domain, for sound engineers and musicians, is gigantic and it’s not
really my place to talk about it, so I'll keep it at that.

44

https://jackaudio.org/applications/
https://www.ap-linux.com/
https://www.bandshed.net/avlinux/
https://linuxmusicians.com/

PipeWire

PipeWire is a relatively new sound-server but is also much more. It not only
handles audio streams but video streams too, it is meant as a generic multime-
dia processing graph server.

On the audio side, it will try to fill the need of both desktop users, like PulseAu-
dio, and professional audio engineers, like JACK.

Initially the project was supposed to be named PulseVideo and do a similar job
to PulseAudio but for Video. The rational to handle all multimedia streams
together is that it makes no sense to handle video streams without the audio
counter-part to sync them together.

The project was started by GStreamer’s creator. The library, as you may re-
member, already handles audio and video streams.

So in sum, that creates an equation that includes GStreamer + PulseAudio +
PulseVideo + JACK-like-graph. The integration with GStreamer means that
applications that already use it will automatically be able to interoperate with
PipeWire.

The project is still in early development, not so stable, and the server side
currently only supports video and has integration layers with PulseAudio and
JACK. Otherwise, it can interfaces with ALSA clients directly, through a new
ALSA pcm device that redirects to PipeWire (Like PulseAudio does).

Some of the new goals of PipeWire is that it will give access to media to sand-
boxed Flatpack applications and allow Wayland compositors to access media
streams securely via a mechanism like PolKit for granular access control. This
is called a policy/session manager.

PipeWire takes ideas from multiple places. In itself it only cares about creating
a graph of nodes that will process and move audio streams around via IPC.
Meanwhile, another process, like with JACK, will take care of managing the
connections, device discovery, and policies.

So you get a division of roles, a processing media graph and a policy/session
manager.

The innovation lies in this graph model taken from JACK, combined with inte-
gration of policy management and desktop usage. Each node in the graphs has
its own buffer mechanism and dynamic latency handling. That leads to a lower
CPU usage because of the timer-based scheduling model that wakes up nodes
only when they need to and can dynamically adapt buffers depending on the
latency needed.

What’s all this talk about nodes and graphs about, what does this actually
mean?

45

Screen Capture
Application

External .
Video Conference M Sound Media
Application SEETELD Recorder Player
Audio DSP

PipeWire

Session Manager

Wayland
Compositor

Screen
Capture
Module

e

I
i
'
'
'
V
'

PipeWire

B

‘ PipeWire Bluetooth

Kernel

PipeWire daemon

C’O COLLABORA
//’

/
[

Audio app L

role- navigation o

Ditferent velume _.--==""
perlink R

splitter (teed on
each port

Different apps on _ 2 k-
different zones

Audio app
role muttimedia R

Each node hasa . .-1"""
role tag

Similar features
also for video

e Devices can be made
ilable by external
PHONE over procosses
ALSAin bluetooth
hw:l.0 (remote audio
> D manager) out
5, with HW DSP Can use a hardware DSP
hwi10 -§---1-- when the node presents
the appropriate intarface
_ > o ACrL
wgerchamndn,,] e —e— Different devices
Mo | [AlsAout B presentad az.
(plugin) hw:0,0
DR
oo Tz L7 D ehannals o
) \\43 C-rr>| Software DSP plugged
S phihhhhhhbbbhbibhiliit badd automatically for other
ALSA out nodes
: D d ALSA out
m'{' __—_-’l hwosr | Numerous useful
e ancel | e plugins available
(plugin) ~

D

€

vaLZ in
[dev/video

Ports can have
different

capabilities

To understand this we have to get 2 concepts: the PipeWire media graphs
and the session management graphs.

PipeWire is a media stream exchange framework, it embodies this concept
through the media graph that is composed of nodes that have ports which
are connected through directed links. The media streams flows from node to
nodes passing by their ports via their links to reach the port of another node.

A node is anything that can process media, that either consumes it or produces

46

it. Each node has its own buffer of data and personal preferences and properties
such as media class, sample rate, bit rate, format, and latency. These nodes can
be anywhere, not limited to inside the PipeWire daemon, but can also be ex-
ternal inside clients. That means the processing of streams can be delegated to
other software and passed around from node to node without PipeWire touching
the stream. Nodes can be applications, real devices, virtual ones, filters, record-
ing application, echo-cancellation, anything that dabbles with media streams.
To interact with the rest of the system, a node can have ports, which are inter-
faces for input (sink) or output (source).

A link is a connection between 2 ports, one as the source the other as the sink.

So far that’s a very generic concept, nodes that handle media and have ports
that can generate media stream or consume it.

Whenever some media needs to be handled by a node, they are woken up by
a timer-scheduler mechanism. The connected nodes form a graph, and one of
these nodes usually “drives” the graph by starting the processing for all other
nodes joined in it. This timer dynamically manages the desired latency for each
node to negotiate the most appropriate one within a range.

When two nodes in a graph need to communicate with one another, they have
to negotiate a common preferred format and minimum latency based on their
buffer size. That’s why the nodes are normally wrapped in an adapter that will
automatically do the conversion (sample rate, sample format, channel conver-
sion, mixing, volume control). This is all done dynamically which is good for
desktop usage, but not so much for pro-audio.

More info about the buffer model here

In practice, that gives a graph that looks like the following, dumped using pw-
dot(1) utility:

nodo_id: 45 noda_id: 42
riame: pw-play name: alsa_inputusb-C-Media_Electronics Inc. Micrsoft LifeChat LX-3000-00.multichannel-input
madia_class: Stream/o madia_ctass: v

oIt id: 44 pOrt_id: 49 port id: 56
‘nama: sutput_FR. ‘name: sutput FL. name: capture_MONO
direction: autpul directon: autput direction: outgut
|
' 1

ink_id: 51 ink_id: 50
output_noda_id: 45 output_noda_id: 45

Input_node_id: 43 input_node_id: 43
utput_port,_id: 44 output_part_id: 49
input_port_id: 54 Input_port_id: 52
state: active state: active
node_id: 43
name: alsa_outpul ush-C-Media_Electronics_ine._Microsoft [LifeChat_LX-3000-00 iecds8-steren
media_class: AudioSink
portid: 53 port_id: 55
name: manitor_FL | | name: monitor FR
direction: output direction: output
pw-dot

So far so good, we have nodes that exchange streams, a graph processing media,
but how do we get these nodes in there in the first place and how do we choose
which one links to which one? We need a way to attach these nodes, decide
what is connected to what. Like when a client attaches and asks to play an

47

https://gitlab.freedesktop.org/pipewire/pipewire/-/wikis/FAQ#pipewire-buffering-explained

audio stream, how is that handled?
That’s where the second piece of the PipeWire equation comes in: the session
connector and policy controller along with its session management graph.

This piece of software is external to PipeWire, it can have multiple implementa-
tions. The default one that comes with the installation is called pipewire-media-
session, another one that is still a work-in-progress is called wireplumber. There
are talks about including it in desktop environment session managers such as
gnome-session-daemon.

The role of this software is to keep track of the devices available, their priorities,
keeping track of which application uses which device, ensuring policy control
and security, keep a device and stream restoration database (not implemented),
share global properties of the system, find the default endpoints used by clients
when asked to play sound, etc..

When clients connect to PipeWire they announce their session information, what
they’d like to do (playback or capture), the type of media they want to handle
(video, playback, VOIP, etc..), their preferred latency and sample rate, etc..
Based on this information, the session manager can shortlist which device the
client needs.

As soon as the client connects, if its session information is new (PID,GID,UID),
it will first be frozen until its permissions are acknowledged. PipeWire default
session manager pipewire-media-session comes with a series of modules that
take care of this called module-portal and module-access. The portal module
will, through desktop integration (via D-Bus, like PolKit), open a pop-up to ask
for user confirmation (read,write,execute). After that, the session manager will
configure the client permissions in its client object.

So clients are not able to list other nodes or connect to them until the session
manager approves.

The session manager can then choose to restore connections based on previous
usage of this stream — decide how to connect it, make sure it’s linked to the
appropriate device and follows the peering rules for its use case (depending on
media type). Then this new node can get connected and configured in the media
graph.

That is as far as clients are concerned, however, PipeWire doesn’t open any
device by default either, and it is also the role of the session manager to load
devices, configure them, and map them on the media graph.

To achieve this flexibly, some session managers can use what is called a ses-
sion management graph. In practice, this is the equivalent to how PulseAudio
manages devices through the concept of cards and profiles that can create sink
and source nodes but with the extra addition of routing based on use case. In-
ternally, the session manager actually reuses the related PulseAudio code and
config for device management.

The session management graph is a representation of this, the high-level media

48

flow from the point of view of the session manager. As far as I can see, these
graphs are hosted within PipeWire along other objects but they have different

types.

.Endpoint Link . |

-|Endpoint Stream|Endpoint |

Endpoints are where media can be routed to or from (laptop speaker, USB
webcam, Bluetooth headset mic, amplifier, radio, etc..). They then get mapped
to nodes in the media graph, but not always.

They can be mutually exclusive, this is the equivalent of device ports, which as
you remember correspond to a single input or output associated with the card.
So the Endpoint is a card+a device port in theory.

The Endpoint Stream are the logical path, the routing associated with a use case
(Music, Voice, Emergency, Media, etc..). They are equivalent to PulseAudio
sink /source on the device side, and sink-input/source-output on the client side.
These can be used to change the routing in the media graph.

The Endpoint Link is what connects and creates the media flow, it can only
exist if there are actual links in the media graph or if the link exists physically
(real hardware connection).

The session manager is then responsible of knowing which devices are present,
what they support, what kind of linking information is there, and if streams
need compatibility between them, and share that information if needed.

Additionally, internally the session manager can put on the graph objects of
type Device which map to the ALSA cards, JACK clients, or others. Like cards
in PulseAudio.

Now let’s see how to configure PipeWire and its session/policy manager.

When the PipeWire daemon starts it reads the config file located at

49

$PIPEWIRE_CONFIG_FILE, normally /etc/pipewire/pipewire.conf. It
contains sections, some to set server values, some to load plugins and modules,
some to create objects, and some to automatically launch programs.

The goal of this configuration file is to make it easy to configure how the
processing happens in the media graph.

The execution section is normally used to automatically launch the session man-
ager.

There are configurations related to how the graph will be scheduled such as
the global sample rate used by the processing pipeline, which all signal will
be converted to: default.clock.rate. The resampling quality can be configured
server side too (even though the node are wrapped in an adapter that does
that) in case it needs to be done. This resampler is a custom highly optimized
one. Moreover, you can control the buffer size minimum and maximum value
through a min-quantum, maz-quantum, and default quantum, which are going
to be used to dynamically change the latency.

default.clock.quantum = 1024
default.clock.min-quantum = 32
default.clock.max-quantum = 8192

NB: PipeWire relies on plugins that follow the SPA, Simple Plugin API, based
on GStreamer plugin mechanism but lighter.
Most of them can be found in /usr/lib/spa-.

Now as far as the session manager is concerned, it highly depends on the imple-
mentation. It is about modules for policy and matching rules to associate them
with specific actions to do in the media graph or the session management graph.
Monitor subsystems watch when a new device or stream appear (new node), or
when the system creates a new object, and decides what to do with it based on
the endpoint configuration.

For example, I have the following rule for WirePlumber in 00-default-output-
audio.endpoint-link:

[match-endpoint]

media_class = "Stream/Output/Audio"

[target-endpoint]
media_class = "Audio/Sink"

Which will attach a new endpoint of class “Stream/Output/Audio” to the de-
fault endpoint with class “Audio/Sink”.
However, this all depends on the session manager implementation.

At this point it’s easy to picture that this system would be fantastic to create
filters and effects streams, however currently this is still very hard to do. So far,
the only way to achieve this is with the help of PulseAudio tools such as pactl.

50

https://github.com/PipeWire/pipewire/blob/master/src/daemon/pipewire.conf.in

You can create sinks and sources with specific media classes so that they map
within PipeWire.
For example:

pactl load-module module-null-sink object.linger=1
media.class=Audio/Sink sink_name=my-sink
channel _map=surround-51

pw-cli can also be used instead:

pw-cli create-node adapter {
factory.name=support.null-audio-sink node.name=my-mic
media.class=Audio/Duplex object.linger=1
audio.position=FL,FR }

It remains that PipeWire is missing the interface toolset to easily interact with
it. There aren’t any good sound configuration tool that permits to inspect and
manipulate it so far. Moreover, the ones that will have to do this will need to
be able to portray the internal connection mechanism, similar to JACK’s many
connection managers.

I quote:

There is currently no native graphical tool to inspect the PipeWire
graph but we recommend to use one of the excellent JACK tools,
such as Carla, catia, gjackctl, .. You will not be able to see all
features like the video ports but it is a good start.

However, someone is working on a new one called helvum: https://gitlab.freed
esktop.org/ryuukyu/helvum

PipeWire comes with a set of mini debug tools similar to what PulseAudio
provides, they start with the pw—* prefix:

e pw-cli - The PipeWire Command Line Interface

e pw-dump - Dump objects inside PipeWire

e pw-dot - The PipeWire dot graph dump in graphviz format
e pw-mon - The PipeWire monitor

e pw-cat - Play an Record media with PipeWire

e pw-play - Like pw-cat but for play only

o pw-metadata - The PipeWire metadata

e pw-profiler - The PipeWire profiler

e pw-top - Acts like top but for devices nodes inside PipeWire

The most useful tools are pw-cli, pw-dump and pw-dot.
Try:

pw-cli info O

o1

https://gitlab.freedesktop.org/ryuukyu/helvum
https://gitlab.freedesktop.org/ryuukyu/helvum

Here’s an extract from pw-dump showing an Endpoint of class “Audio/Source”,
a microphone on the boring headset you’ve encountered in this article.

{

"id": 53,

"type": "PipeWire:Interface:Endpoint",

"version": O,

"permissions": [uru’ "W", "X", nm"]’

"props": {
"endpoint .name":

"alsa_card.usb-C-Media_Electronics_Inc._Micro..",

"media.class": "Audio/Source",
"session.id": 75,

"client.id": 39,
"factory.id": 25
X
1,

Overall, PipeWire is an interesting sound server, combining a media processing
graphs framework along with an external policy/session/connection manager
that controls it. The timer and dynamic latency mechanism should have a
significant effect on CPU usage.

Unfortunately, after testing it you can clearly see that it is still in its early stage
but that it integrates well on the audio part through the backward compatibility
with PulseAudio.

Additionally, it remains to be seen if the tooling around it will adapt properly
to the graph thinking. Will they build around the concept or dismiss it entirely
considering most desktop tools today aren’t used to long sequence of media
processing, and neither are users.

Finally, on the session/connection manager side we need more innovation. What
is currently available seems to be lacking. I couldn’t find much documentation
about the restoration DB mechanism, hot-plug, desktop integration, caching of
sample sounds for events, and others.

92

Conclusion

Anybody who claims one system offers better audio “quality” is just plain wrong
and base their assumption on something non-scientifically proven.

All the low-level stacks are relatively the same speed when running in bit-perfect
mode. The big differences between all that we’ve seen relates to the driver sup-
port, the ease of use, the desktop integration, and the buffer/latency manage-
ment.

Some systems are targeted at end users and others at audio engineers.

According to measurements from A Look at Linux Audio (ALSA, PulseAudio)
for instance, ALSA performs very well on Linux and keeps up with a Windows
machine that is much more performant. Tests with PulseAudio are similar but
use 6% more CPU processing.

Whether in the past with Mac OS X, or Windows, and now Linux,
there is no evidence that operating systems make any difference to
sound quality if you’re playing “bit perfect” to the hardware directly
(ie. ALSA to DAC with no software conversion similar to Windows
ASIO, Kernel Streaming or WASAPT)

The discussion then rotates around low-latency using real-time scheduling, bet-
ter 10, using better sampling size, etc.. (See Analog to Digital & Digital to
Analog (ADC & DAC) for more info on what these mean).

The audio stack is fragmented on all operating systems because the problem is a
large one. For example, on Windows the audio APIs being ASIO, DirectSound
and WASAPI.

Perhaps MacOs has the cleanest audio stack, CoreAudio, but nobody can clearly
say if they can’t look at the code. PulseAudio was inspired by it.

The stack of commercial operating systems are not actually better or simpler.

Meanwhile, the BSD stack is definitely the simplest, even though there are
discrepancies between the lowest layers and lack of driver support, sndio makes
it a breeze.

Linux is the platform of choice for audio and acoustic research and was chosen
by the CCRMA (Center for Computer Research in Music and Acoustics).

Let’s conclude, we’ve seen basic concepts about audio such as the typical hard-
ware component, how audio is transferred and converted from the real world
to the digital world through digital-to-analog-converters. We’ve seen the issue
about buffering and fragment size. Then we’ve taken a look at different libraries
that can act as translation layers, as processing helper, or as standard format to
write filters. After that we went through the drivers: ALSA and OSS, the crazy
configuration format and plugins of ALSA and the internal concepts it has to
map devices. On the OSS and SADA side, we've seen the historical fracture
and how things could be done mainly hidden away inside the kernel via tunable
to not freak out the users. Finally, we’ve attacked sound servers, from sndio, to

93

http://archimago.blogspot.com/2015/10/measurements-look-at-linux-audio-alsa.html

the deprecated aRts and ESD, to PulseAudio, to JACK, and lastly PipeWire.
Each of them has its specialty, sndio being extremely simple, PulseAudio being
great for the desktop integration use case, JACK catering to the audio engineers
having too much equipment to connect together and having superb integration
with professional tools, and PipeWire that is getting inspired by JACK’s graphs
but wants to take it a step further by including video streams, integrating with
the desktop and making things more snappy with wake-up node driving the
processing graph.

o4

Bibliography

Morelo, David. “Noob’s Guide to Linux Audio: ALSA, OSS, and Pulse Audio Explained.”
Linuz Hint, 1 Jan. 1969, https://linuxhint.com/guide linux_audio/.

Willis, Nathan. “Why You Should Care about PulseAudio (and How to Start Doing It).”
Linuz.com, 3 Nov. 2007, https://www.linux.com/news/why-you-should-care-about- pulseaud
io-and-how-start-doing-it/.

Turcotte, Mike. “GNU/Linux for Beginners: How Audio Works - GHacks Tech News.” GHacks
Technology News, Publisher Ghacks Technology NewsLogo, 16 Aug. 2017, https://www.ghac
ks.net/2017/08/16/linux-audio-explained/.

Crocoduckoducks. “The Linux Audio Anatomy.” The Crocoduck’s Pond, 17 Feb. 2018, https:
/ /thecrocoduckspond.wordpress.com/2016/11/19/the-linux-audio-anatomy/.

“FreeBSD Handbook - Sound Setup.” The FreeBSD Project, https://www.freebsd.org/doc/
handbook/sound-setup.html.

“FreeBSD Manual Pages - Sound(4).” Sound(4), https://www.freebsd.org/cgi/man.cgi?query
=sound&sektion=4&manpath=FreeBSD%2B7.2-RELEASE.

Gray, Niklas. “Writing a Low-Level Sound System - You Can Do It! - Our Machinery.” Our
Machinery, Our Machinery, 17 Mar. 2020, https://ourmachinery.com/post/writing-a-low-
level-sound-system/.

OpenAL, https://www.openal.org/.

Gustafsson, Dennis. “Low Level Audio.” Tuzedolabs Blog, 25 June 2013, https://blog.tuxed
olabs.com/2013/06/26 /low-level-audio.html.

“Videos/Digital Show and Tell” Videos/Digital Show and Tell - XiphWiki, https://wiki.xip
h.org/Videos/Digital _Show_and_ Tell.

Burk, Phil. “PortAudio - an Open-Source Cross-Platform Audio APL” PortAudio Portable
Cross-Platform Audio 1/O API, https://portaudio.com/.

GStreamer, https://gstreamer.freedesktop.org/.

“GStreamer.” Wikipedia, Wikimedia Foundation, 26 Nov. 2020, https://en.wikipedia.org/wik
i/GStreamer.

“Libcanberra.” Libcanberra - ArchWiki, https://wiki.archlinux.org/index.php/Libcanberra.
Linux Audio Developer’s Simple Plugin API (LADSPA), https://www.ladspa.org/.

Open Sound System, https://www.opensound.com/oss.html.

OpenBSD FAQ: Multimedia, https://www.openbsd.org/faq/faql3.html#default.

“Main Page.” Open Sound System, http://ossnext.trueinstruments.com/wiki/index.php/Mai
n_ Page.

“Open Sound System OSS 4.x Programmer’s Guide.” OSS v4.x API Reference - Developing
Applications for Open Sound System Version 4.1, http://manuals.opensound.com/developer/.

“Open Sound System.” Open Sound System - ArchWiki, https://wiki.archlinux.org/index.p
hp/Open_ Sound_ System.

0SS core configuration file, https://fossies.org/linux/misc/legacy/oss-linux-v4.2-2019-
amd64.tar.bz2/usr/lib/oss/conf.tmpl/osscore.conf

99

https://linuxhint.com/guide_linux_audio/
https://www.linux.com/news/why-you-should-care-about-pulseaudio-and-how-start-doing-it/
https://www.linux.com/news/why-you-should-care-about-pulseaudio-and-how-start-doing-it/
https://www.ghacks.net/2017/08/16/linux-audio-explained/
https://www.ghacks.net/2017/08/16/linux-audio-explained/
https://thecrocoduckspond.wordpress.com/2016/11/19/the-linux-audio-anatomy/
https://thecrocoduckspond.wordpress.com/2016/11/19/the-linux-audio-anatomy/
https://www.freebsd.org/doc/handbook/sound-setup.html
https://www.freebsd.org/doc/handbook/sound-setup.html
https://www.freebsd.org/cgi/man.cgi?query=sound&sektion=4&manpath=FreeBSD%2B7.2-RELEASE
https://www.freebsd.org/cgi/man.cgi?query=sound&sektion=4&manpath=FreeBSD%2B7.2-RELEASE
https://ourmachinery.com/post/writing-a-low-level-sound-system/
https://ourmachinery.com/post/writing-a-low-level-sound-system/
https://www.openal.org/
https://blog.tuxedolabs.com/2013/06/26/low-level-audio.html
https://blog.tuxedolabs.com/2013/06/26/low-level-audio.html
https://wiki.xiph.org/Videos/Digital_Show_and_Tell
https://wiki.xiph.org/Videos/Digital_Show_and_Tell
https://portaudio.com/
https://gstreamer.freedesktop.org/
https://en.wikipedia.org/wiki/GStreamer
https://en.wikipedia.org/wiki/GStreamer
https://wiki.archlinux.org/index.php/Libcanberra
https://www.ladspa.org/
https://www.opensound.com/oss.html
https://www.openbsd.org/faq/faq13.html#default
http://ossnext.trueinstruments.com/wiki/index.php/Main_Page
http://ossnext.trueinstruments.com/wiki/index.php/Main_Page
http://manuals.opensound.com/developer/
https://wiki.archlinux.org/index.php/Open_Sound_System
https://wiki.archlinux.org/index.php/Open_Sound_System
https://fossies.org/linux/misc/legacy/oss-linux-v4.2-2019-amd64.tar.bz2/usr/lib/oss/conf.tmpl/osscore.conf
https://fossies.org/linux/misc/legacy/oss-linux-v4.2-2019-amd64.tar.bz2/usr/lib/oss/conf.tmpl/osscore.conf

Canonical. Ubuntu Manpage: Osscore - Open Sound Sytem Core Audio Framework., https:
//manpages.ubuntu.com/manpages/bionic/man?7/osscore.7.html.

Canonical. Ubuntu Manpage: oss_usb - USB Audio/MIDI/Mizer Driver, https://manpages
.ubuntu.com/manpages/bionic/man7/oss_ usb.7.html.

“Open Sound System for NetBSD.” OpenSoundSystem, https://wiki.netbsd.org/opensounds
ystem/.

“Exploring Audio in OpenBSD.” MrBool, https://mrbool.com/exploring-audio-in-openbsd/
29890.

“Udev.” Alsa Opensrc Org - Independent ALSA and Linuz Audio Support Site, https://alsa
.opensrc.org/Udev.

“Cat -v Harmful Stuff” ALSA, https://harmful.cat-v.org/software/operating-systems/linux/
alsa.

“ALSA, Exposed!” Rendaw, https://rendaw.gitlab.io/blog/2125{09a85f2.html#alsa-exposed.

“Advanced Linux Sound Architecture.” Wikipedia, Wikimedia Foundation, 31 Mar. 2021, https:
//en.wikipedia.org/wiki/Advanced_Linux_Sound_ Architecture.

“ALSA. AlsaProject, https://alsa-project.org/wiki/Main_ Page.
A Close Look at ALSA, https://www.volkerschatz.com/noise/alsa.html.

“Slave Definition.” ALSA Project - the C Library Reference: PCM (Digital Audio) Plugins,
https://www.alsa-project.org/alsa-doc/alsa-lib/pcm_ plugins.html.

notes.for.sabi.co.UK, notes {at}. Linuz ALSA Sound Notes, https://www.sabi.co.uk/Notes
/linuxSound ALSA .html.

Archimago. MEASUREMENTS: A Look at Linuz Audio (ALSA, PulseAudio), http://arch
imago.blogspot.com/2015/10/measurements-look-at-linux-audio-alsa.html.

“alsa_rnnoise.” ~Arsen/alsa_rnnoise - Sourcehut Git, https://git.sr.ht/~arsen/alsa_rnnoise/.
Sound - FreeBSD Wiki, https://wiki.freebsd.org/Sound.

“Sndio.” Sndio - Void Linuz Handbook, https://docs.voidlinux.org/config/media/sndio.html.
“Sndio Home.” Sndio, https://sndio.org/.

“OpenBSD Manual Page Server.” Sndio(7) - OpenBSD Manual Pages, https://man.openbsd.
org/sndio.

“Sndio” Wikipedia, Wikimedia Foundation, 13 Jan. 2019, https://en.wikipedia.org/wiki/Sn
dio.

“OpenBSD Manual Page Server.” Sndiod(8) - OpenBSD Manual Pages, https://man.openbs
d.org/sndiod.8.

Ratchov, Alexandre. Sndio— OpenBSD Audio € MIDI Framework Formusic and Desktop
Applications. AsiaBSDCon 2010, 13 Mar. 2010, https://www.openbsd.org/papers/asiabsdco
n2010_ sndio_ slides.pdf.

“OpenBSD Manual Page Server.” Audio(4) - OpenBSD Manual Pages, https://man.openbsd.
org/audio.4.

“OpenBSD Manual Page Server” Audioctl(8) - OpenBSD Manual Pages, https://man.open
bsd.org/audioctl.8.

Duncaen. “Duncaen/Alsa-Sndio.” GitHub, https://github.com/Duncaen/alsa-sndio.

96

https://manpages.ubuntu.com/manpages/bionic/man7/osscore.7.html
https://manpages.ubuntu.com/manpages/bionic/man7/osscore.7.html
https://manpages.ubuntu.com/manpages/bionic/man7/oss_usb.7.html
https://manpages.ubuntu.com/manpages/bionic/man7/oss_usb.7.html
https://wiki.netbsd.org/opensoundsystem/
https://wiki.netbsd.org/opensoundsystem/
https://mrbool.com/exploring-audio-in-openbsd/29890
https://mrbool.com/exploring-audio-in-openbsd/29890
https://alsa.opensrc.org/Udev
https://alsa.opensrc.org/Udev
https://harmful.cat-v.org/software/operating-systems/linux/alsa
https://harmful.cat-v.org/software/operating-systems/linux/alsa
https://rendaw.gitlab.io/blog/2125f09a85f2.html#alsa-exposed
https://en.wikipedia.org/wiki/Advanced_Linux_Sound_Architecture
https://en.wikipedia.org/wiki/Advanced_Linux_Sound_Architecture
https://alsa-project.org/wiki/Main_Page
https://www.volkerschatz.com/noise/alsa.html
https://www.alsa-project.org/alsa-doc/alsa-lib/pcm_plugins.html
https://www.sabi.co.uk/Notes/linuxSoundALSA.html
https://www.sabi.co.uk/Notes/linuxSoundALSA.html
http://archimago.blogspot.com/2015/10/measurements-look-at-linux-audio-alsa.html
http://archimago.blogspot.com/2015/10/measurements-look-at-linux-audio-alsa.html
https://git.sr.ht/~arsen/alsa_rnnoise/
https://wiki.freebsd.org/Sound
https://docs.voidlinux.org/config/media/sndio.html
https://sndio.org/
https://man.openbsd.org/sndio
https://man.openbsd.org/sndio
https://en.wikipedia.org/wiki/Sndio
https://en.wikipedia.org/wiki/Sndio
https://man.openbsd.org/sndiod.8
https://man.openbsd.org/sndiod.8
https://www.openbsd.org/papers/asiabsdcon2010_sndio_slides.pdf
https://www.openbsd.org/papers/asiabsdcon2010_sndio_slides.pdf
https://man.openbsd.org/audio.4
https://man.openbsd.org/audio.4
https://man.openbsd.org/audioctl.8
https://man.openbsd.org/audioctl.8
https://github.com/Duncaen/alsa-sndio

Rudd-O. “How PulseAudio Works.” Rudd, 26 June 2013, https://rudd-o.com/linux-and-free-
software/how-pulseaudio-works.

“How Does PulseAudio Start?” Uniz & Linuz Stack Ezchange, 1 Feb. 1964, https://unix.sta
ckexchange.com/questions/204522 /how-does-pulseaudio-start.

“Welcome to PulseAudio!” PulseAudio, https://www.freedesktop.org/wiki/Software/PulseA
udio/.
“PulseAudio.” PulseAudio - ArchWiki, https://wiki.archlinux.org/index.php/PulseAudio.

“PulseAudio Modules.” Modules — PulseAudio, https://www.freedesktop.org/wiki/Software/
PulseAudio/Documentation/User/Modules/.

“PulseAudio.” PulseAudio - Debian Wiki, https://wiki.debian.org/PulseAudio.

Pulseaudio-Equalizer-Ladspa. “Pulseaudio-Equalizer-Ladspa/Equalizer.” GitHub, https://gi
thub.com/pulseaudio-equalizer-ladspa/equalizer.

Gaydov, Victor. “PulseAudio under the Hood.” Victor Gaydov, https://gavv.github.io/artic
les/pulseaudio-under-the-hood/.

“This Is the Route to Hell” Colin. Guthr.ie, https://colin.guthr.ie/2010/02/this-is-the-route-
to-hell/.

Person. “Setting up Virtual Surround Sound for Headphones.” EndeavourOS, 13 Aug. 2020,
https://forum.endeavouros.com/t/howto-setting-up-virtual-surround-sound-for-headphones
/6889.

“How Use PulseAudio and JACK?: JACK Audio Connection Kit.” How Use PulseAudio and
JACK? | JACK Audio Connection Kit, https://jackaudio.org/faq/pulseaudio_and_ jack.ht
ml.

CCB, spol. s r.o. “QJackCtl: JACK Rack.” QJackCtl: JACK Rack - Linuz E X P R E S,
https://www.linuxexpres.cz/praxe/qjackctl-jack-rack.

Kucera, Frantisek. “Generating and Sending MIDI Messages.” Generating and Sending MIDI
Messages — Relational Pipes, https:/ /relational-pipes.globalcode.info/v_ 0/examples-jack-
midi-generating-1.xhtml.

Yusof, Khairil. “Audio and MIDI Controller on Ubuntu Linux.” Medium, Medium, 25 May
2020, https://medium.com/@kaerumy/audio-and-midi-controller-on-ubuntu-linux-1058e00b
c7d0.

“Record, Edit, and Mix on Linux, MacOS and Windows.” Ardour, https://ardour.org/.

“Demystifying JACK — A Beginners Guide to Getting Started with JACK.” Demystifying
JACK - A Beginners Guide to Getting Started with JACK | Libre Music Production, https:
//linuxaudio.github.io/libremusicproduction/html/articles /demystifying-jack- %0E2%80%93-
beginners-guide-getting-started-jack.

“Multimedia Processing.” Pipe Wire, https://pipewire.org/.

“PipeWire.” Wikipedia, Wikimedia Foundation, 11 May 2021, https://en.wikipedia.org/wiki/
PipeWire.

“PipeWire.” PipeWire - ArchWiki, https://wiki.archlinux.org/index.php/PipeWire.

“Wiki - PipeWire / Pipewire.” GitLab, https://gitlab.freedesktop.org/pipewire/pipewire/-
/wikis/Configuration.

“Wiki - PipeWire / Object Design.” GitLab, https://gitlab.freedesktop.org/pipewire/pipewi
re/- /blob/master/doc/objects__design.md

o7

https://rudd-o.com/linux-and-free-software/how-pulseaudio-works
https://rudd-o.com/linux-and-free-software/how-pulseaudio-works
https://unix.stackexchange.com/questions/204522/how-does-pulseaudio-start
https://unix.stackexchange.com/questions/204522/how-does-pulseaudio-start
https://www.freedesktop.org/wiki/Software/PulseAudio/
https://www.freedesktop.org/wiki/Software/PulseAudio/
https://wiki.archlinux.org/index.php/PulseAudio
https://www.freedesktop.org/wiki/Software/PulseAudio/Documentation/User/Modules/
https://www.freedesktop.org/wiki/Software/PulseAudio/Documentation/User/Modules/
https://wiki.debian.org/PulseAudio
https://github.com/pulseaudio-equalizer-ladspa/equalizer
https://github.com/pulseaudio-equalizer-ladspa/equalizer
https://gavv.github.io/articles/pulseaudio-under-the-hood/
https://gavv.github.io/articles/pulseaudio-under-the-hood/
https://colin.guthr.ie/2010/02/this-is-the-route-to-hell/
https://colin.guthr.ie/2010/02/this-is-the-route-to-hell/
https://forum.endeavouros.com/t/howto-setting-up-virtual-surround-sound-for-headphones/6889
https://forum.endeavouros.com/t/howto-setting-up-virtual-surround-sound-for-headphones/6889
https://jackaudio.org/faq/pulseaudio_and_jack.html
https://jackaudio.org/faq/pulseaudio_and_jack.html
https://www.linuxexpres.cz/praxe/qjackctl-jack-rack
https://relational-pipes.globalcode.info/v_0/examples-jack-midi-generating-1.xhtml
https://relational-pipes.globalcode.info/v_0/examples-jack-midi-generating-1.xhtml
https://medium.com/@kaerumy/audio-and-midi-controller-on-ubuntu-linux-1058e00bc7d0
https://medium.com/@kaerumy/audio-and-midi-controller-on-ubuntu-linux-1058e00bc7d0
https://ardour.org/
https://linuxaudio.github.io/libremusicproduction/html/articles/demystifying-jack-%E2%80%93-beginners-guide-getting-started-jack
https://linuxaudio.github.io/libremusicproduction/html/articles/demystifying-jack-%E2%80%93-beginners-guide-getting-started-jack
https://linuxaudio.github.io/libremusicproduction/html/articles/demystifying-jack-%E2%80%93-beginners-guide-getting-started-jack
https://pipewire.org/
https://en.wikipedia.org/wiki/PipeWire
https://en.wikipedia.org/wiki/PipeWire
https://wiki.archlinux.org/index.php/PipeWire
https://gitlab.freedesktop.org/pipewire/pipewire/-/wikis/Configuration
https://gitlab.freedesktop.org/pipewire/pipewire/-/wikis/Configuration
https://gitlab.freedesktop.org/pipewire/pipewire/-/blob/master/doc/objects_design.md
https://gitlab.freedesktop.org/pipewire/pipewire/-/blob/master/doc/objects_design.md

“PipeWire Late Summer Update 2020.” Christian FK Schaller, https://blogs.gnome.org/ur
aeus,/2020/09/04/pipewire-late-summer-update-2020/.

“WirePlumber Configuration.” Configuration, https://pipewire.pages.freedesktop.org/wireplu
mber/daemon/configuration.html?gi-language=c.

“WirePlumber, the PipeWire Session Manager.” Collabora, https://www.collabora.com/news-
and-blog/blog/2020/05/07 /wireplumber-the-pipewire-session-manager,/.

Taymans, Wim. Simple Plugin API, Redhat, 10 Oct. 2016, https://gstreamer.freedesktop.or
g/data/events/gstreamer-conference/2016/Wim%20Taymans%20- %20Simple%20Plugin%2
0API%20(SPA).pdf.

Kiagiadakis, George. The Pipe Wire Multimedia Framework and Its Potential in AGL, Col-
labora, https://wiki.automotivelinux.org/ media/pipewire agl 20181206.pdf.

“New Graphing Tool for PipeWire Debugging.” Collabora, https://www.collabora.com/news-
and-blog/blog/2019/12/09/new-graphing-tool-pipewire-debugging/.

Taymans, Wim. PIPEWIRE: A LOW-LEVEL MULTIMEDIA SUBSYSTEM, Red Hat,
Spain, 25 Nov. 2020, https://lac2020.sciencesconf.org/307881 /document.

“PipeWire: The Linux Audio/Video Bus.” LWN.net, https://lwn.net/SubscriberLink /84741
2/d7826b1353¢33734/.

“PipeWire.” PipeWire - Gentoo Wiki, https://wiki.gentoo.org/wiki/PipeWire.

“Audio Latency Demystified, Part 1/4.” MINDMusicLabs.com, 3 Apr. 2019, https://www.mi
ndmusiclabs.com/audio-latency-demystified-part-1/.

“Windows Audio APIs” Windows Audio APIs - Official Kodi Wiki, https://kodi.wiki/view
/Windows__audio_ APIs.

“Center for Computer Research in Music and Acoustics” CCRMA, https://ccrma.stanford.e
du/.

Wang, Yonghao, Ryan Stables, and Joshua Reiss. “Audio latency measurement for desktop
operating systems with onboard soundcards.” Audio Engineering Society Convention 128.
Audio Engineering Society, 2010.

Wright, Matthew, Ryan J. Cassidy, and Michael Zbyszynski. “Audio and gesture latency
measurements on linux and osx.” ICMC. 2004.

98

https://blogs.gnome.org/uraeus/2020/09/04/pipewire-late-summer-update-2020/
https://blogs.gnome.org/uraeus/2020/09/04/pipewire-late-summer-update-2020/
https://pipewire.pages.freedesktop.org/wireplumber/daemon/configuration.html?gi-language=c
https://pipewire.pages.freedesktop.org/wireplumber/daemon/configuration.html?gi-language=c
https://www.collabora.com/news-and-blog/blog/2020/05/07/wireplumber-the-pipewire-session-manager/
https://www.collabora.com/news-and-blog/blog/2020/05/07/wireplumber-the-pipewire-session-manager/
https://gstreamer.freedesktop.org/data/events/gstreamer-conference/2016/Wim%20Taymans%20-%20Simple%20Plugin%20API%20(SPA).pdf
https://gstreamer.freedesktop.org/data/events/gstreamer-conference/2016/Wim%20Taymans%20-%20Simple%20Plugin%20API%20(SPA).pdf
https://gstreamer.freedesktop.org/data/events/gstreamer-conference/2016/Wim%20Taymans%20-%20Simple%20Plugin%20API%20(SPA).pdf
https://wiki.automotivelinux.org/_media/pipewire_agl_20181206.pdf
https://www.collabora.com/news-and-blog/blog/2019/12/09/new-graphing-tool-pipewire-debugging/
https://www.collabora.com/news-and-blog/blog/2019/12/09/new-graphing-tool-pipewire-debugging/
https://lac2020.sciencesconf.org/307881/document
https://lwn.net/SubscriberLink/847412/d7826b1353e33734/
https://lwn.net/SubscriberLink/847412/d7826b1353e33734/
https://wiki.gentoo.org/wiki/PipeWire
https://www.mindmusiclabs.com/audio-latency-demystified-part-1/
https://www.mindmusiclabs.com/audio-latency-demystified-part-1/
https://kodi.wiki/view/Windows_audio_APIs
https://kodi.wiki/view/Windows_audio_APIs
https://ccrma.stanford.edu/
https://ccrma.stanford.edu/

	Introduction
	Hardware layer
	Analog to Digital & Digital to Analog (ADC & DAC)
	Libraries
	Audio Driver
	Advanced Linux Sound Architecture (ALSA)
	Open Sound System (OSS) and SADA
	Sound Servers
	sndio
	aRts (analog Real time synthesizer) and ESD or ESounD (Enlightened Sound Daemon)
	PulseAudio
	PulseAudio — What Is It?
	Pulseaudio — Overall Design
	Pulseaudio — Sink, Sink Input, Source, and Source Input
	Pulseaudio — Internal Concepts: Cards, Card Profile, Device Port, Device
	Pulseaudio — Everything Is A Module Thinking
	Pulseaudio — Startup Process And Configuration
	Pulseaudio — Interesting Modules And Features
	Pulseaudio — Tools
	Pulseaudio — Suspending

	JACK
	PipeWire
	Conclusion
	Bibliography

